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Multivariate extreme value theory is concerned with modeling the joint
tail behavior of several random variables. Existing work mostly focuses on
asymptotic dependence, where the probability of observing a large value in
one of the variables is of the same order as observing a large value in all vari-
ables simultaneously. However, there is growing evidence that asymptotic
independence is equally important in real world applications. Available sta-
tistical methodology in the latter setting is scarce and not well understood the-
oretically. We revisit nonparametric estimation and introduce rank-based M-
estimators for parametric models that simultaneously work under asymptotic
dependence and asymptotic independence, without requiring prior knowledge
on which of the two regimes applies. Asymptotic normality of the proposed
estimators is established under weak regularity conditions. We further show
how bivariate estimators can be leveraged to obtain parametric estimators in
spatial tail models, and again provide a thorough theoretical justification for
our approach.

1. Introduction. Assessing the frequency of extreme events is crucial in many different
fields such as environmental sciences, finance and insurance. The most severe risks are often
associated to a combination of extreme values of several different variables or the joint oc-
currence of an extreme phenomenon across different spatial locations. Statistical methods for
accurate modeling of such multivariate or spatial dependencies between rare events is pro-
vided by extreme value theory. Applications include the analysis of extreme flooding (Asadi,
Davison and Engelke (2015), Engelke and Hitz (2020), Keef, Tawn and Svensson (2009)),
risk diversification between stock returns (Poon, Rockinger and Tawn (2004), Zhou (2010))
and climate extremes (Westra and Sisson (2011), Zscheischler and Seneviratne (2017)).

Extremal dependence between largest observations of two random variables X and Y with
distribution functions F1 and F2, respectively, can take many different forms. A classical as-
sumption to measure and model this dependence is multivariate regular variation (cf., Resnick
(1987)), which is equivalent to the existence of the stable tail dependence function

(1.1) �(x, y) := lim
t↓0

1

t
P
(
F1(X) ≥ 1 − tx or F2(Y ) ≥ 1 − ty

)
, x, y ∈ [0,∞);

see Huang (1992) and de Haan and Ferreira (2006). This condition allows a first broad
classification regarding extremal dependence of bivariate random vectors into two different
regimes. If �(x, y) = x + y, X and Y are said to be asymptotically independent; in this case
the joint exceedance probability is negligible compared to the marginal exceedance proba-
bilities. Otherwise, a stronger form of extremal dependence, called asymptotic dependence,
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holds and the joint exceedance probability is of the same order as the probability of one of
the components exceeding a high threshold.

Most of the existing probabilistic and statistical theory deals with asymptotic depen-
dence. A variety of methods exists, including nonparametric estimation (Einmahl and Segers
(2009), Guillotte, Perron and Segers (2011), Huang (1992)), bootstrap procedures (Bücher
and Dette (2013), Peng and Qi (2008)), parametric approaches including likelihood estima-
tion (de Haan, Neves and Peng (2008), Dombry, Engelke and Oesting (2017), Ledford and
Tawn (1996), Padoan, Ribatet and Sisson (2010)) and M-estimation (Einmahl, Krajina and
Segers (2008), Engelke et al. (2015)). See also Einmahl, Krajina and Segers (2012), Einmahl
et al. (2016) for inference in the d-dimensional and spatial setting. There is a rich literature
on multivariate tail models (see, for instance, Gumbel (1960), Hüsler and Reiss (1989), Tawn
(1988), among many others) and generalizations to spatial domains (Brown and Resnick
(1977), Schlather (2002), Smith (1990)).

Recent studies have shown that in many applications such as spatial precipitation (Le et al.
(2018)) and significant wave height (Wadsworth and Tawn (2012)), dependence tends to be-
come weaker for the largest observations and asymptotic independence is therefore the more
appropriate regime. In this case, the stable tail dependence function in (1.1) does not con-
tain information on the degree of asymptotic independence and is therefore not suitable for
statistical modeling. A remedy to this problem was proposed by Ledford and Tawn (1996),
Ledford and Tawn (1997) who introduced a more flexible condition on the joint exceedance
probabilities. Their setting implies the existence of

(1.2) c(x, y) := lim
t↓0

1

q(t)
P
(
F1(X) ≥ 1 − tx,F2(Y ) ≥ 1 − ty

)
, x, y ∈ [0,∞),

where q is a suitable measurable function that makes the limit nontrivial. Necessarily, q is
regularly varying at zero with index 1/η ∈ [1,∞). The residual tail dependence coefficient η

describes the strength of residual dependence in the tail and η < 1 implies asymptotic inde-
pendence. One speaks about positive and negative association between extremes if η > 1/2
and η < 1/2, respectively. Early works focus on estimating the degree of asymptotic inde-
pendence η and various estimators have been proposed and studied (Draisma et al. (2004),
Ledford and Tawn (1997), Peng (1999)). A more complete description of the residual ex-
tremal dependence structure is given by the function c in equation (1.2); in fact, the value of
η can be deduced from c (see Section 2 below). Several parametric families exist for multi-
variate (e.g., Weller and Cooley (2014)) and spatial applications (e.g., Wadsworth and Tawn
(2012)). Other statistical approaches for modeling asymptotic independence are also related
to this function, including hidden regular variation (Heffernan and Resnick (2007), Resnick
(2002)) and the conditional extreme value model (Heffernan and Tawn (2004)). Note that
equation (1.2) includes the asymptotic dependence case if limt↓0 q(t)/t > 0, and the func-
tion c(x, y) ∝ x + y − �(x, y) then contains the same information as �.

Since it is typically not known a priori whether asymptotic dependence or independence
is present in a data set, recent parametric models are able to capture both regimes as different
sub-sets of the parameter space (e.g., Engelke, Opitz and Wadsworth (2019), Huser, Opitz
and Thibaud (2017), Huser and Wadsworth (2019), Ramos and Ledford (2009), Wadsworth
et al. (2017)). Most of the literature in this domain is concerned with constructing parametric
models, and estimation is usually based on censored likelihood and discussed informally
while no theoretical treatment of the corresponding estimators is provided. Moreover, it is
typically assumed that extreme observations used to construct estimators already follow a
limiting model, and the bias which results from this type of approximation is ignored.

The present paper is motivated by a lack of generic estimation methods that work under
both asymptotic dependence and independence and have a thorough theoretical justification.
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We first revisit a nonparametric, rank-based estimator of the function c in equation (1.2)
which appeared in Draisma et al. (2004) and provide a new fundamental result on its asymp-
totic properties, which completely removes any smoothness assumptions on c. This result is
the crucial building block for the second major contribution of this paper: a new M-estimation
framework that is applicable across dependence classes.

M-estimators for the stable tail dependence function � have been proposed by Einmahl,
Krajina and Segers (2008, 2012), Einmahl et al. (2016). Under asymptotic dependence, c can
be recovered from �, and thus any method for estimating � also yields an estimator for c.
However, this is no longer true under asymptotic independence. Estimators of � can there-
fore not be used to fit statistical models with asymptotic independence or models bridging
both dependence classes. We define a new class of M-estimators based on c for paramet-
ric extreme value models that can be applied regardless of the dependence class. A major
challenge under asymptotic independence is due to the fact that the scaling function q is un-
known. Additionally, c loses some of the regularity (such as concavity) that it enjoys under
asymptotic dependence. Nevertheless, we are able to prove asymptotic normality of our esti-
mators under weak regularity conditions, which are shown to be satisfied for popular models
such as the class of inverted max-stable distributions (see Wadsworth and Tawn (2012)).

The challenges described above become even greater for spatial data. Even at the level of
pairwise distributions, real data can exhibit asymptotic dependence at locations that are close
but asymptotic independence at locations that are far apart. This necessitates models that can
incorporate both, asymptotic dependence and independence at the same time. Estimation in
such models calls for methods that can deal with both regimes simultaneously, and we show
that our findings in the bivariate case can be leveraged to construct estimators in this setting.

In Section 2, we provide the necessary background on asymptotic dependence and inde-
pendence for bivariate distributions, discuss an extension to the spatial setting and provide
several examples. The estimation methodology is introduced in Section 3, while theoretical
results are collected in Section 4. The methodology is illustrated via simulation studies in
Section 5, while an application to extreme rainfall data is given in Section 6. All proofs are
deferred to the Supplementary Material (Lalancette, Engelke and Volgushev (2021)). All ref-
erences to sections, results and equations starting with the letter “S” are pointing to this online
supplement. The R code can be found at https://github.com/mic-lalancette/rank-based.

2. Multivariate extreme value theory.

2.1. Bivariate models. Let (X,Y ) be a bivariate random vector with joint distribution
function F and marginal distribution functions F1 and F2, respectively. There is a variety of
approaches to describe the joint tail behavior of (X,Y ).

The assumption of multivariate regular variation (cf., Resnick (1987)) is classical in ex-
treme value theory and the stable tail dependence function in (1.1) has been extensively stud-
ied. Its margins are normalized, �(x,0) = �(0, x) = x, and it satisfies x ∨ y ≤ l(x, y) ≤ x + y

for all x, y ∈ [0,∞). Moreover, it is a convex and homogeneous function of order one, the
latter meaning that �(tx, ty) = t�(x, y) for all t > 0. The importance of stable tail depen-
dence functions stems from their connection to max-stable distributions. A bivariate random
vector (Z1,Z2) has max-stable dependence with standard uniform margins iff its distribution
function is given by

P(Z1 ≤ x,Z2 ≤ y) = exp
{−�(− logx,− logy)

}
, x, y ∈ [0,1],(2.1)

where � is the stable tail dependence function pertaining to (Z1,Z2). Note that any max-
stable distribution associated with � satisfies equation (1.1) with that same �, this follows after
a simple Taylor expansion. Two examples of max-stable distributions (equivalently, stable tail
dependence functions) that will repeatedly appear in the present paper are as follows.

https://github.com/mic-lalancette/rank-based
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(i) The bivariate Hüsler–Reiss distribution (Engelke et al. (2015), Hüsler and Reiss
(1989)) is defined by

�(x, y) = x�

(
λ + logx − logy

2λ

)
+ y�

(
λ + logy − logx

2λ

)
,

where � is the standard normal distribution function and λ ∈ [0,∞] parametrizes between
perfect independence (λ = ∞) and dependence (λ = 0).

(ii) The asymmetric logistic distribution (Tawn (1988)) is given by

�(x, y) = (1 − ν)x + (1 − φ)y + (
νrxr + φryr)1/r

, ν,φ ∈ [0,1], r ≥ 1.

Note that ν = φ = 1 yields the classical logistic model (Gumbel (1960)).

While multivariate regular variation and max-stability have been very popular due to their
nice theoretical properties, they are not informative under asymptotic independence, which
limits their use in many applications.

Assumption (1.2) allows for more flexible tail models since the limiting function c is
nontrivial even under asymptotic independence and contains information on the structure
of residual extremal dependence in the vector (X,Y ). For the sake of identifiability, we scale
q such that c(1,1) = 1. We will refer to c and q as the survival tail function and the scal-
ing function associated to (X,Y ). It turns out that q has to be regularly varying of order
1/η ∈ [1,∞) and that c is a homogenous funcion of order 1/η, that is,

c(tx, ty) = t1/ηc(x, y), t > 0;
see, for example, Draisma et al. (2004) or Lemma S2 in the online supplement. Note that
the extremal dependence coefficient (see Coles, Heffernan and Tawn (1999)) can be defined
as χ := limt↓0 q(t)/t . Asymptotic independence is then equivalent to χ = 0, or q(t) = o(t),
whereas asymptotic dependence corresponds to χ > 0.

Furthermore, the homogeneity property of c implies a spectral representation. More pre-
cisely, there exists a finite measure H on [0,1] such that

c(x, y) =
∫
[0,1]

(
x

1 − w
∧ y

w

)1/η

H(dw), x, y ∈ [0,∞);
see Theorem 1 in Ramos and Ledford (2009) or Lemma S6 in the online supplement.

We provide several examples that illustrate the concepts discussed above without going
too deeply into technical details. A more thorough discussion of the corresponding theory is
given throughout Section 4.

EXAMPLE 1 (Domain of attraction of max-stable distributions). Suppose that (X,Y )

satisfies equation (1.1) for a stable tail dependence function � which is not everywhere equal
to x + y. Then equation (1.2) holds with q(t) = χt and c(x, y) = (x + y − �(x, y))/χ ,
where the extremal dependence coefficient χ is positive. We further note that equation (1.1)
holds whenever (X,Y ) is in the max domain of attraction of a max-stable random vector
Z satisfying equation (2.1); see de Haan and Ferreira (2006) for a definition and additional
details.

EXAMPLE 2 (Inverted max-stable distributions). The family of inverted max-stable dis-
tributions (e.g., Wadsworth and Tawn (2012), Definition 2) is parametrized by all stable tail
dependence functions. More precisely, let G be the distribution function of a bivariate distri-
bution with max-stable dependence, uniform margins and stable tail dependence function �.
A random vector (X,Y ) with uniform marginal distributions is said to have an inverted max-
stable distribution with stable tail dependence � if (1 − X,1 − Y) ∼ G. Assuming that �
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satisfies a quadratic expansion (see Example 8), the law of (X,Y ) satisfies equation (1.2)
with

q(t) = t�(1,1), c(x, y) = x�̇1(1,1)y�̇2(1,1),

where �̇j denotes the j th directional partial derivative of � from the right, j = 1,2. Any such
stable tail dependence function satisfies �(1,1) = �̇1(1,1) + �̇2(1,1) ∈ (1,2] and, therefore,
this is an asymptotically independent model with η = 1/�(1,1).

Any existing parametric class of stable tail dependence functions can be used to define
a parametric class of inverted max-stable distributions. In particular, we consider the two
families discussed earlier:

(i) Provided that λ > 0, the inverted Hüsler–Reiss distribution has

(2.2) q(t) = t2θ , c(x, y) = (xy)θ ,

where θ := �(λ) ∈ (1/2,1].
(ii) The inverted asymmetric logistic distribution has

(2.3) q(t) = t θ1+θ2, c(x, y) = xθ1yθ2,

where θ1 := 1 − ν + νr(νr + φr)1/r−1 and θ2 := 1 − φ + φr(νr + φr)1/r−1. Note that by
suitable choices of the parameters r , ν, φ any value of (θ1, θ2) ∈ (0,1]2 such that θ1 + θ2 ∈
(1,2] can be obtained.

EXAMPLE 3 (A random scale construction). Bivariate random scale constructions are a
popular way of creating distributions with rich extremal dependence structures; see Engelke,
Opitz and Wadsworth (2019) and references therein for an overview. They are random vectors
of the form (X,Y ) = R(W1,W2) where the radial variable R is assumed independent of
the angular variables Wj , j ∈ {1,2}. This motivates the following model with parameters
αR,αW > 0:

(2.4) (X,Y ) = R(W1,W2), R ∼ Pareto(αR),Wj ∼ Pareto(αW),

where W1, W2 are independent and a Pareto(α) distribution has distribution function 1 −
x−α for x ≥ 1. By Example 9 below, (X,Y ) satisfies equation (1.2) with functions q and c

depending only on the value of the ratio λ := αR/αW . In particular, we obtain asymptotic
dependence if λ < 1 and asymptotic independence otherwise. Detailed expressions for q and
c are provided in Example 9.

2.2. Spatial models. Spatial extreme value theory is an extension of multivariate ex-
tremes to continuous index sets. It is particularly useful for modeling extremes of natural
phenomena over spatial domains and examples include heavy rainfall, high wind speeds and
heatwaves (e.g., Davison and Gholamrezaee (2012), Le et al. (2018)).

Let T be a spatial domain (typically a subset of R2) and Y = {Y(u) : u ∈ T } be a stochastic
process whose extremal behavior we are interested in. We impose the condition in equation
(1.2) on all bivariate margins of Y so that for each pair s = (u,u′) of locations, and all
x, y ∈ [0,∞) the limit

(2.5) c(s)(x, y) := lim
t↓0

1

q(s)(t)
P
(
F (u)(Y(u)

)≥ 1 − tx,F (u′)(Y (u′))≥ 1 − ty
)

exists and is nontrivial; here F (u) is the distribution function of Y(u). Similar to the bivariate
case, q(s) must be regularly varying with index 1/η(s) ∈ [1,∞) and c(s) is homogeneous of
order 1/η(s).
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In applications, spatial extreme value theory can be linked to multivariate extreme value
theory through the fact that spatial processes are usually measured at a finite set of locations.
However, generic multivariate models do not take into account the additional structure arising
from spatial features of the domain. Statistical models for processes, in contrast, make use of
geographical information to construct structured, low-dimensional parametric models (see,
e.g., Engelke and Ivanovs (2021)).

Similarly to max-stable distributions in equation (2.1), max-stable processes play an im-
portant role in modeling spatial extremes. The stochastic process Z = {Z(u) : u ∈ T } is called
max-stable if all its finite dimensional distributions are max-stable, which implies in partic-
ular that for each pair s = (u,u′), the bivariate margin (Z(u),Z(u′)) satisfies equation (2.1)
with stable tail dependence function �(s). Hence equation (2.5) follows for any max-stable
process Z for which (Z(u),Z(u′)) are not independent for all u,u′ ∈ T .

Brown–Resnick processes (Brown and Resnick (1977)) provide an important subclass of
max–stable processes. A Brown–Resnick process B = {B(u) : u ∈ T } is parametrized by a
variogram function γ : T 2 → R+, and any pair (B(u),B(u′)) is a bivariate Hüsler–Reiss
distribution with parameter λ = √

γ (u,u′)/2 (Hüsler and Reiss (1989)). Parametric models
can be constructed by imposing a parametric form for γ . An example when T ⊂ R

d is the
fractal family of variograms given by γ (s) = (‖s1 − s2‖/β)α , where s = (s1, s2), ‖ · ‖ is the
Euclidean norm and α ∈ (0,2], β > 0 are the model parameters (Kabluchko, Schlather and
de Haan (2009)). We next discuss two classes of processes for which equation (2.5) holds.

EXAMPLE 4 (Domain of attraction of max-stable processes). A process Y = {Y(u) : u ∈
T } is in the max-domain of attraction of the max-stable process Z if there exist sequences of
continuous functions an, bn : T →R such that

(2.6)
{

max
i=1,...,n

Yi(·) − an(·)
}
/bn(·) �Z(·), n → ∞

for i.i.d. copies Y1, Y2, . . . of the process Y where weak convergence takes place in the space
of continuous functions on T equipped with the supremum norm; see de Haan and Lin (2001)
and Chapter 9 of de Haan and Ferreira (2006) for the special case T = [0,1].

Equation (2.6) implies that any pair (Y (u),Y (u′)) with u �= u′ ∈ T is in the max-domain
of attraction of the pair (Z(u),Z(u′)). If every such pair is not independent, equation (2.5)
holds for all s = (u,u′) by the discussion in Example 1.

While max-stable processes allow for flexible spatial dependence structures, they can only
be used as models for asymptotic dependence. This often violates the characteristics observed
in real data, especially for locations u,u′ ∈ T that are far apart. To model data in such cases,
asymptotically independent spatial models have been constructed that satisfy equation (2.5)
and where the residual tail dependence coefficients η(s) vary with the distance between the
pair s of locations. Most of the models are identifiable from the bivariate margins so that
statistical methods for c(s) will provide estimators for spatial tail dependence parameters;
see Section 3.3 for the methodology. A broad class of asymptotically independent stochastic
processes are the inverted max-stable processes (Wadsworth and Tawn (2012)).

EXAMPLE 5 (Inverted max-stable processes). Let Z = {Z(u) : u ∈ T } be a process with
max-stable dependence, uniform margins and bivariate tail dependence functions �(s). The
process Y = {1 − Z(u) : u ∈ T } is called inverted max-stable. For a pair s ∈ T 2, assuming
that �(s) satisfies the smoothness condition mentioned in Example 2, Y satisfies equation (2.5)
with

q(s)(t) = t�
(s)(1,1), c(s)(x, y) = x�̇

(s)
1 (1,1)y�̇

(s)
2 (1,1),
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so that η(s) = 1/�(s)(1,1) is a (usually nonconstant) function on T 2. In particular, if a Brown–
Resnick process is parametrized by a variogram function γ : T 2 → R+ then the correspond-
ing inverted Brown–Resnick process has 1/η(s) = 2�(

√
γ (s)/2).

3. Estimation. In this section, we present the proposed estimators. First, we recall the
nonparametric estimator of a survival tail function from Draisma et al. (2004) in Section 3.1.
Using this as building block, we construct M-estimators for bivariate survival tail functions
(Section 3.2) and leverage those estimators to introduce methodology for spatial tail estima-
tion (Section 3.3).

3.1. Nonparametric estimators of survival tail functions. Recall that (X,Y ) is a random
vector with joint distribution function F that satisfies equation (1.2), and assume that its
marginal distribution functions F1 and F2 are continuous. Denoting by Q the joint distribu-
tion function of (1 − F1(X),1 − F2(Y )), we can rephrase equation (1.2) as

(3.1)
Q(tx, ty)

q(t)
= c(x, y) + O

(
q1(t)

)
, x, y ∈ [0,∞),

for some function q1(t) → 0 as t → 0. Suppose that (X1, Y1), . . . , (Xn,Yn) are independent
samples from F . Since F1, F2 are unknown, the observations (1 − F1(Xi),1 − F2(Yi)) are
not available and cannot be used to construct a feasible estimator of Q. A typical solution to
this problem is to replace Fj by its empirical counterpart F̂j , which leads to the estimator

(3.2) Q̂n(x, y) := 1

n

n∑
i=1

1
{
nF̂1(Xi) ≥ n + 1 − �nx�, nF̂2(Yi) ≥ n + 1 − �ny�};

see Drees and Huang (1998), Huang (1992), Einmahl, Krajina and Segers (2008, 2012)
among others for related approaches in the estimation of stable tail dependence functions.

Given Q̂n and the expansion in equation (3.1), an intuitive plug-in estimator of the function
c is given by

(3.3) ĉn(x, y) = Q̂n(kx/n, ky/n)

q(k/n)
,

where we set t = k/n in equation (3.1) for an intermediate sequence k = kn such that k → ∞,
k/n → 0. Note, however, that this estimator is infeasible under asymptotic independence
since the function q is in general unknown. A simple remedy is to recall that we considered
the normalization c(1,1) = 1 and construct a ratio type estimator

(3.4) c̃n(x, y) := ĉn(x, y)

ĉn(1,1)
= Q̂n(kx/n, ky/n)

Q̂n(k/n, k/n)

to cancel out the unknown scaling factor q(k/n). This leads to a fully nonparametric estimator
of c, which is interesting in its own right. Some comments on the asymptotic properties of
this estimator will be provided in Section 4.1.1.

REMARK 1. In practice, and especially in a spatial context, it is sometimes appropriate
to select directly the effective number of observations used for estimating c (Wadsworth and
Tawn (2012)). This can be achieved by selecting k = k̂ such that nQn(k̂/n, k̂/n) = m for a
given value m. This leads to a data-dependent parameter k̂ which will also be covered by our
theory.
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3.2. M-estimation in (bivariate) parametric model classes. While the nonparametric es-
timators from the previous section possess attractive theoretical properties, they have certain
practical drawbacks. For any finite sample size n they are neither continuous nor homoge-
neous, hence they are not admissible survival tail functions. Additionally, it is difficult to use
purely nonparametric estimators in spatial settings. A solution to this problem, which also
yields easily interpretable estimators, is to fit parametric models.

In what follows, assume that c belongs to a family {cθ : θ ∈ }, where  ⊆ R
p and the

true parameter θ0 ∈  is unknown. Our aim is to leverage the nonparametric estimators from
Section 3.1 to construct an estimator for θ0. For stable tail dependence functions which are
only informative under asymptotic dependence such a program was carried out in Einmahl,
Krajina and Segers (2008), Einmahl, Krajina and Segers (2012). A direct application of the
corresponding ideas in our setting would be to estimate θ through

θ̆ := arg min
θ∈

∥∥∥∥∫[0,T ]2
g(x, y)cθ (x, y) dx dy −

∫
[0,T ]2

g(x, y)c̃n(x, y) dx dy

∥∥∥∥,
for an integrable vector-valued weight function g : R2 → R

q , where ‖ · ‖ denotes the Eu-
clidean norm. However, as we will discuss in Remark 5, the use of c̃n would place unneces-
sarily strong assumptions on the function c in the case of asymptotic dependence. Hence we
propose to consider the following alternative approach. Define

(3.5) �∗
n(θ, ζ ) := ζ

∫
[0,T ]2

g(x, y)cθ (x, y) dx dy −
∫
[0,T ]2

g(x, y)Q̂n(kx/n, ky/n)dx dy

and let

(3.6) (θ̂n, ζ̂n) := arg min
θ∈,ζ>0

∥∥�∗
n(θ, ζ )

∥∥.
To understand the rationale of this approach, note that ĉn(x, y) is proportional to

Q̂n(kx/n, ky/n) but the proportionality constant involves q and is thus unknown. We thus
essentially propose to add this unknown normalization factor as an additional scale parame-
ter ζ . More precisely, write μL for the Lebesgue measure on [0, T ]2, let

�n(θ, σ ) = σ

∫
gcθ dμL −

∫
gĉn dμL

and note that �∗
n and �n are linked through �∗

n(θ, ζ ) = q(k/n)�n(θ, ζ/q(k/n)). Thus
(θ̂n, ζ̂n) minimizes ‖�∗

n‖ if and only if (θ̂n, ζ̂n/q(k/n)) minimizes ‖�n‖. Furthermore, under
suitable assumptions on g and  we have σ

∫
gcθ dμL = ∫

gcθ0 dμL if and only if θ = θ0 and
σ = 1. Hence, if ĉn is close to cθ0 , it is expected that θ̂n will be close to θ0 and that ζ̂n/q(k/n)

will be approximately 1.
Note that equation (3.5) only involves an integral of Q̂n while c̃n also involves point-

wise evaluation of this function. Since integration acts as smoothing, it can be expected that
studying �∗

n will require less regularity conditions than working with θ̆ ; see Remark 5 for
additional details.

3.3. Parametric estimation for spatial tail models. In this section, we show how the bi-
variate estimation procedures discussed earlier can be leveraged to obtain two different es-
timators for parametric spatial models, which can include both asymptotic dependence and
independence. Assume that we observe n independent copies Y1, . . . , Yn of a spatial pro-
cess Y at a finite set of locations u1, . . . , ud ∈ T . Denote the corresponding observations
by X1, . . . ,Xn where Xi = (X

(1)
i , . . . ,X

(d)
i ) := (Yi(u1), . . . , Yi(ud)) are independent copies

of the random vector X = (X(1), . . . ,X(d)) := (Y (u1), . . . , Y (ud)) ∈ R
d ; see Einmahl et al.

(2016) for a similar framework.
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Let P denote the set of all subsets of {1, . . . , d} of size 2 interpreted as ordered pairs,
so that elements of P will take the form s = (s1, s2) with s1 < s2. In what follows, we will
need to repeatedly make use of vectors x ∈ R

|P| that are indexed by all pairs s ∈ P . For such
vectors, we will assume that the pairs in P are ordered in a prespecified order and will write
x(s) for the entry of the vector x that corresponds to pair s.

Assume that for each pair s the random vector (X(s1),X(s2)) satisfies equation (3.1) with
scale function q(s) and survival tail function c(s). Following the ideas laid out in Section 3.1,
define Q̂

(s)
n as in equation (3.2) but based on the bivariate observations (X

(s1)
i ,X

(s2)
i ), i =

1, . . . , n. We now discuss two parametric estimators for the functions c(s).
Assume that we start with a parametric model {cθ : θ ∈ ̃}, ̃ ⊆ R

p̃ , for bivariate survival
tail functions and that each c(s) falls in this class. This implies that ̃ can be linked to a
spatial parameter space  ⊆R

p through the relations c(s) = ch(s)(ϑ0)
, where h(s) :  → ̃ for

each pair s. To make this idea more concrete, consider the following example, which we will
revisit in Sections 5.2 and 6.

EXAMPLE 6. If the process Y is an inverted Brown–Resnick process on R
2 (see Ex-

ample 5), then X has an inverted Hüsler–Reiss distribution and the bivariate survival tail
functions are of the form c(s)(x, y) = (xy)θ

(s)
, for some θ(s) ∈ (1/2,1). This determines the

parametric class ̃. A more specific model of Brown–Resnick processes corresponds to the
subfamily of fractal variograms (Engelke et al. (2015), Kabluchko, Schlather and de Haan
(2009)), where

(3.7) θ(s) = h(s)((α,β)
)= �

(
(‖us1 − us2‖/β)α/2

2

)
, s ∈ P,

where uj ∈ R
2 is the coordinate of the location j ; see Section 6 for more motivation of

this particular parametrization. The global parameter ϑ thus takes the form ϑ = (α,β) and
 = (0,2] × (0,∞).

Given the setting above, we can thus compute parametric estimators θ̂
(s)
n , s ∈ P , by the

methods for bivariate estimation discussed in Section 3.2, that is, (θ̂
(s)
n , ζ̂

(s)
n ) is the minimizer

of ‖�∗(s)
n (θ, ζ )‖, where �

∗(s)
n is defined as �∗

n in (3.5) with Q̂
(s)
n and an intermediate se-

quence k(s) replacing Q̂n and k. We obtain an estimator of the spatial parameter by least
squares minimization,

(3.8) ϑ̂n := arg min
ϑ∈

∑
s∈P

∥∥h(s)(ϑ) − θ̂ (s)
n

∥∥2
.

As an alternative, one may use the relations h(s) between the spatial and bivariate param-
eters and minimize all the objective functions �

∗(s)
n simultaneously, leading to the estimator

(3.9) (ϑ̃n, ζ̃n) := arg min
ϑ∈,ζ∈R|P |

+

∑
s∈P

∥∥�∗(s)
n

(
h(s)(ϑ), ζ (s))∥∥2

.

A theoretical analysis of the estimators ϑ̂n and (ϑ̃n, ζ̃n) is provided in Theorem 5. We further
remark that the computational complexity of the proposed estimators is much lower than that
of methods based on full likelihood and it compares favorably to pairwise likelihood. Addi-
tional details regarding the latter point can be found in Section S5 of the online supplement.

REMARK 2. At first glance the minimization problem in equation (3.9) seems to be
computationally intractable since it contains |P| + dim() parameters and since |P| can be
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very large even for moderate dimension d . However, a closer inspection reveals that for given
ϑ , partially minimizing the objective function in (3.9) over ζ ∈R

|P|
+ has the exact solution

ζ̂ (s)
n (ϑ) =

∑q
j=1

∫
gj (x, y)Q̂

(s)
n (k(s)x/n, k(s)y/n)dx dy∑q

j=1

∫
gj (x, y)ch(s)(ϑ)(x, y) dx dy

,

whenever the right-hand side is positive for all s. This is satisfied if for instance g is positive
everywhere and each Q̂

(s)
n is based on at least one data point. Thus only numerical optimiza-

tion over ϑ , which is usually low dimensional, is required.

4. Theoretical results. We now present our main results on the asymptotic distributions
of the various estimators introduced in Section 3. First, functional central limit theorems are
stated for ĉn, followed by our main result on the bivariate M-estimator. Finally, asymptotic
normality of the processes ĉ

(s)
n and of the two parametric estimators in the spatial setting is

established. The proofs of all main results are deferred to Section S1 in the online supplement.

4.1. The bivariate setting. All results in this section will be derived under the following
fundamental assumption.

CONDITION 1.

(i) Equation (3.1) holds uniformly on S+ = {(x, y) ∈ [0,∞)2 : x2 + y2 = 1} with a func-
tion q1(t) = O(1/ log(1/t)) and the function q is such that χ := limt↓0 q(t)/t ∈ [0,1] exists.

(ii) As n → ∞, m = mn := nq(k/n) → ∞ and
√

mq1(k/n) → 0.

We note that in the proofs, equation (3.1) is required to hold locally uniformly on [0,∞)2,
but by Lemma S2 uniformity on S+ implies uniformity over compact subsets of [0,∞)2.
Condition 1(ii) is a standard assumption that makes certain bias terms negligible. It is not a
model assumption; under Condition 1(i), there always exists a sequence k such that Condi-
tion 1(ii) is satisfied, and thus all of the following discussion will focus on Condition 1(i).
Notably and in contrast to most of the existing literature involving nonparametric estima-
tion, Condition 1 does not assume any differentiability of the function c. In fact, our proofs
show that all the regularity required on c can be derived from equation (3.1). Considering
Remark 1, it is possible to use a data-dependent value k̂. In following results, when this is
done, we will assume that there is an unknown sequence k that satisfies Condition 1(ii), that
m is defined as therein, and that k̂ is chosen so that nQ̂n(k̂/n, k̂/n) = m.

We next discuss this condition in the examples introduced in Section 2.1. Proofs for the
claims in the examples below can be found in Sections S3 and S4 of the online supplement.

EXAMPLE 7 (Example 1, continued). Most of the literature on asymptotic analysis of
estimators of the stable tail dependence function � or related quantities under domain of
attraction conditions makes some version of the following assumption:

(4.1)
1

t
P
(
F1(X) ≥ 1 − tx and F2(Y ) ≥ 1 − ty

)− R(x, y) = O
(
q̃1(t)

)
, x, y ∈ [0,∞);

for a nonvanishing function R on [0,∞)2 where q̃1(t) = o(1); see, for instance, condition
(C2) in Einmahl, Krajina and Segers (2008) or the discussion in Bücher, Volgushev and
Zou (2019). A simple computation involving the inclusion–exclusion formula further shows
that this is equivalent to assuming that convergence in equation (1.1) takes place with rate
O(q̃1(t)) and that �(x, y) = x + y − R(x, y). Clearly, equation (4.1) implies Condition 1(i)
with q(t) = tR(1,1), c(x, y) = R(x, y)/R(1,1) and q1(t) = q̃1(t).
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TABLE 1
Tail expansion of the random scale model in equation (2.4). Here, we set μ := x ∧ y, M := x ∨ y and Kλ is a

positive constant given in equation (S4.1) of the online supplement

Range of λ q(t) c(x, y) q1(t)

(0,1) Kλt 2−λ
2(1−λ)

μ − λ
2(1−λ)

μ1/λM1−1/λ t1/λ−1

1 Kλt
log(1/t)+log log(1/t)

μ(1 + 1
2 log(Mμ )) 1/ log(1/t)

(1,2) Kλtλ λ
2(λ−1)

μMλ−1 − 2−λ
2(λ−1)

μλ t(λ−1)∧(2−λ)

2 Kλt2 log(1/t) μM 1/ log(1/t)

(2,∞) Kλt2 μM tλ−2

EXAMPLE 8 (Example 2, continued). Let (X,Y ) be a bivariate inverted max-stable dis-
tribution and assume that there exists a constant C < ∞ such that for all u, v > 0,∣∣�(1 + u,1 + v) − �(1,1) − �̇1(1,1)u − �̇2(1,1)v

∣∣≤ C
(
u2 + v2),

where �̇j represent the directional partial derivatives of � from the right. In particular, it
suffices for � to be twice differentiable. Then the random vector (X,Y ) satisfies Condi-
tion 1(i) with q(t) = t�(1,1), c(x, y) = x�̇1(1,1)y�̇2(1,1) and q1(t) = 1/ log(1/t). Moreover,
�̇j (1,1) ∈ (0,1] and �̇1(1,1) + �̇2(1,1) = �(1,1) ∈ (1,2].

EXAMPLE 9 (Example 3, continued). Let (X,Y ) be a random scale construction as de-
fined in equation (2.4) and set λ = αR/αW . Then (X,Y ) satisfies Condition 1(i) with func-
tions q , c and q1 determined by λ as in Table 1.

4.1.1. Asymptotic theory for nonparametric estimators. In this section, we consider the
estimator ĉn from equation (3.3). Since the process convergence results differ under asymp-
totic dependence and independence, we discuss these settings separately. Our first result deals
with asymptotic independence.

THEOREM 1 (Asymptotic normality of ĉn under asymptotic independence). Assume
Condition 1. Then under asymptotic independence, that is, when χ = 0,

Wn := √
m(ĉn − c) � W,

in �∞([0, T ]2), for any T < ∞. Here, W is a centered Gaussian process with covariance
structure given by E[W(x,y)W(x′, y′)] = c(x ∧ x′, y ∧ y′). The same remains true if k is
replaced by k̂ as described after Condition 1.

Note that process convergence of the estimator c̃n from equation (3.4) can be obtained
from the above result through a straightforward application of the functional delta method.
This will not be needed in the theory for M-estimators in the next section and details are
omitted for the sake of brevity.

Asymptotic properties of ĉn were considered in Draisma et al. (2004). However, the proof
of the corresponding result (Lemma 6.1) in the latter reference makes the additional assump-
tion that the partial derivatives of c exist and are continuous on [0, T ]2 (cf. Peng ((1999),
Theorem 2.2)). In contrast, we are able to show that no condition on existence or continu-
ity of partial derivatives is required. This is a considerable strengthening of the result which
further allows to handle many interesting examples that were not covered by the results of
Draisma et al. (2004). Indeed, both the popular class of inverted max-stable distributions in
Example 2 and the random scale construction in Example 3 lead to functions c that fail to
have continuous or even bounded partial derivatives. Before moving on to discussing results
under asymptotic dependence, we briefly comment on some of the main ideas of the proof.
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REMARK 3 (Main ideas of the proof of Theorem 1). The proof relies on the decomposi-
tion

ĉn(x, y) − c(x, y) =
{
Qn(

kun(x)
n

,
kvn(y)

n
)

q(k/n)
− c

(
un(x), vn(y)

)}+ (
c
(
un(x), vn(y)

)− c(x, y)
)
,

where

un(x) := n

k
Un,�kx� and vn(y) := n

k
Vn,�ky�,

and Un,k and Vn,k denote the kth order statistics of 1 − F1(X1), . . . ,1 − F1(Xn) and
1 − F2(Y1), . . . ,1 − F2(Yn), respectively with Un,0 = Vn,0 = 0. The core difficulty is to
show that the difference c(un(x), un(y)) − c(x, y) is negligible. Under the assumption
of the existence and continuity of partial derivatives of c on [0, T ]2 made in Draisma
et al. (2004), this is a direct consequence of the fact that under asymptotic independence√

m(un(x)− x) = oP (1). Dropping this assumption considerably complicates the theoretical
analysis. The proof strategy is to derive bounds on increments of c(x, y) for x, y close to
0 where the partial derivatives of c can become unbounded (see Lemmas S7 and S8) and
to combine those bounds with subtle results on weighted weak convergence of un(x) − x

as a process in x; see Lemma S3 where we essentially leverage the findings of Csörgő and
Horváth (1987).

We next turn to the case of asymptotic dependence. Results on convergence of ĉn in the
space �∞ are well known under this regime; they are equivalent to similar results about
estimated stable tail dependence functions (cf. Huang (1992)). However, they require the ex-
istence and continuity of partial derivatives of � or, equivalently, c. As shown in Einmahl,
Krajina and Segers (2008), Einmahl, Krajina and Segers (2012), the latter condition is re-
strictive and in fact not necessary to derive asymptotic normality of M-estimators.

The treatment of M-estimators in Einmahl, Krajina and Segers (2008), Einmahl, Krajina
and Segers (2012) involves a direct analysis of certain integrals without using process conver-
gence in �∞([0, T ]d). While this approach could be transferred to our setting, we will instead
follow a strategy put forward in Bücher, Segers and Volgushev (2014) and prove weak con-
vergence of ĉn with respect to the hypimetric introduced therein. This approach will turn out
to generalize much more easily when we deal with spatial estimation problems. Convergence
with respect to this metric holds without any assumptions on the existence of partial deriva-
tives and is sufficiently strong to guarantee convergence of integrals which is needed for the
analysis of M-estimators.

Let ċ1 denote the partial derivative of c with respect to x from the left and ċ2 de-
note its partial derivative with respect to y from the right. Under asymptotic dependence,
c(x, y) ∝ x + y − �(x, y) is concave since � is convex (de Haan and Ferreira ((2006), Propo-
sition 6.1.21)), hence those directional partial derivatives exist everywhere on (0,∞)2, by
Theorem 23.1 of Rockafellar (1970). The definition can be extended to [0,∞)2 be setting
ċ1(0, y) to be the derivative from the right instead of from the left.

To describe the limiting distribution, recall that χ = limt→0 q(t)/t ∈ [0,1] is positive only
in the case of asymptotic dependence. For (x, y), (x′, y′) ∈ [0,∞)2, define

(4.2) �
(
(x, y),

(
x′, y′))=

⎡⎢⎣c
(
x ∧ x′, y ∧ y′) χc

(
x ∧ x′, y

)
χc

(
x, y ∧ y′)

χc
(
x ∧ x′, y′) χ

(
x ∧ x′) χ2c

(
x, y′)

χc
(
x′, y ∧ y′) χ2c

(
x′, y

)
χ
(
y ∧ y′)

⎤⎥⎦ ,

and let (W,W(1),W(2)) be an R
3-valued, zero mean Gaussian process on [0,∞)2 with co-

variance function �. Note that W is the limiting process in Theorem 1, that W(1)(x, y) is
constant in y and that W(2)(x, y) is constant in x.
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THEOREM 2 (Asymptotic normality of ĉn under asymptotic dependence). Assume Con-
dition 1. Then under asymptotic dependence, that is, when χ > 0,

Wn � B := W − ċ1W
(1) − ċ2W

(2)

in (L∞([0, T ]2), dhypi), for any T < ∞. Here, Wn is defined as in Theorem 1. The same
remains true if k is replaced by k̂ as described after Condition 1.

Note that weak convergence in the above theorem takes place in (L∞([0, T ]2), dhypi)

where L∞([0, T ]2) corresponds to equivalence classes of functions in �∞([0, T ]2) with re-
spect to the hypi(semi)metric dhypi; see Bücher, Segers and Volgushev (2014) for additional
details.

The proof of Theorem 2 follows by adapting the arguments given in Bücher, Segers and
Volgushev (2014) for the function � and builds on the fact that under asymptotic dependence
the function c is differentiable almost everywhere. Note however that, in contrast to simi-
lar results in Bücher, Segers and Volgushev (2014), our limiting process is stated without
appealing to lower semicontinuous extensions. This type of statement is inspired by the rep-
resentation of certain integrals in Einmahl, Krajina and Segers (2012) and is possible in the
bivariate setting due to concavity of c under asymptotic dependence. Additional comments
on the representation of the limiting process are given in Remark 4 below.

REMARK 4. In order to obtain asymptotic results for our M-estimator, weak convergence
of
∫

gWn dμL to
∫

gB dμL is sufficient. Under asymptotic dependence, this is seen to follow
from Theorem 2 (see the proof of Theorem 3). However, this process convergence result is
not necessary. An approach that is used in Einmahl, Krajina and Segers (2012) is to write
an expression for the random vector

∫
gWn dμL and directly work out its weak limit. With

this strategy, ċj may be defined as left or right derivatives without problem as
∫

ċjW
(j) dμL

will be unchanged. In contrast, proving weak hypiconvergence of Wn to B makes our results
more general and more easily generalized to the spatial framework. The cost of doing so is
that the directional derivatives ċj must be chosen in a specific way; see Lemma S9.

REMARK 5. Recall that under asymptotic independence, process convergence of c̃n

could be obtained from Theorem 1 by a simple application of the delta method. This is no
longer the case in the general setting of Theorem 2 because weak convergence with respect
to the hypimetric does not imply convergence of Wn(1,1), unless the limiting process B has
sample paths which are a.s. continuous in (1,1). The latter happens only if the partial deriva-
tives of c exist and are continuous in (1,1). Under this additional assumption convergence of
c̃n with respect to the hypimetric can be obtained.

4.1.2. Asymptotic theory for bivariate M-estimators. Equipped with the process conver-
gence tools from the previous section, we proceed to analyze the M-estimator introduced in
Section 3.2. Consistency is established by standard arguments, and for the sake of brevity we
do not state the corresponding results here. In the present section, we focus on the asymptotic
distribution. Define the objective function � :  ×R+ → �( ×R+) ⊆R

q by

(4.3) �(θ,σ ) := σ

∫
gcθ dμL −

∫
gc dμL.

Clearly, �(θ0,1) = 0. In addition, assume that (θ0,1) is a unique, well separated zero of �

and let J�(θ, σ ) denote the Jacobian matrix of � for points (θ, σ ) ∈  ×R+ where it exists.
Define �((x, y), (x′, y′)) = c(x∧x′, y∧y′) under asymptotic independence and otherwise

�
(
(x, y),

(
x′, y′))

= (
1,−ċ1(x, y),−ċ2(x, y)

)
�
(
(x, y),

(
x′, y′))(1,−ċ1

(
x′, y′),−ċ2

(
x′, y′))�,
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where � is defined in equation (4.2). Recall from the previous section that these directional
derivatives always exist when χ > 0 since in this case c is concave. In fact, �((x, y), (x′, y′))
is the covariance between W(x,y) and W(x′, y′) (under asymptotic independence) or be-
tween B(x, y) and B(x′, y′) (under asymptotic dependence). Hence in those two regimes,

A :=
∫
[0,T ]4

g(x, y)g
(
x′, y′)��

(
(x, y),

(
x′, y′))dx dy dx′ dy′ ∈ R

q×q

is the covariance matrix of the random vector
∫

gW dμL or
∫

gB dμL, respectively. We are
now ready to state the main result of this section: asymptotic normality of (θ̂n, ζ̂n), which
holds under both asymptotic dependence and independence.

THEOREM 3 (Asymptotic normality of θ̂n). Assume that � has a unique, well separated
zero at (θ0,1) and is differentiable at that point with Jacobian J := J�(θ0,1) of full rank
p + 1, p = dim(). Further assume Condition 1. Then the estimators (θ̂n, ζ̂n) defined in
equation (3.6) satisfy

√
m

((
θ̂n,

nζ̂n

m

)
− (θ0,1)

)
� N(0,�),

where � := (J�J )−1J�AJ(J�J )−1. The same remains true if k is replaced by k̂ as de-
scribed after Condition 1.

While for simplicity the estimator is defined as an exact minimizer, the same result can be
obtained for an approximate minimizer. Precisely, it is obvious from the proof of Theorem 3
that as long as �∗

n(θ̂n, ζ̂n) = infθ,ζ �∗
n(θ, ζ )+ oP (

√
m/n), the conclusion still holds. Finally,

recall that the coefficient of tail dependence η can be recovered from the function c since
the latter is homogeneous of order 1/η, and this relation always holds. Therefore, inside
the assumed parametric model, η can be represented as a function η(θ). The asymptotic
distribution of the resulting estimator can be obtained by a direct application of the delta
method and details are omitted for the sake of brevity.

4.2. The spatial setting. In this section, we assume the framework of Section 3.3 and
establish asymptotic properties of the estimators therein. For each pair s ∈ P , let k(s) be an
intermediate sequence and define

ĉ(s)
n (x, y) := Q̂

(s)
n (k(s)x/n, k(s)y/n)

q(s)(k(s)/n)
.

From Section 4.1.1, the asymptotic distribution of ĉ
(s)
n is known under suitable conditions.

However, as the spatial estimators ϑ̂n and ϑ̃n are based on all pairs, a joint convergence
statement about all processes ĉ

(s)
n is necessary. This will require an additional assumption,

which we present and discuss next.
Let F (1), . . . ,F (d) denote the marginal distribution functions of the random vector X,

which itself consists of the spatial process Y evaluated at d different locations. In order to
obtain the asymptotic covariance between different processes ĉ

(s)
n , we need to ensure that

certain multivariate tail probabilities converge. Partition the set P into PI and PD , consisting
of the asymptotically independent and asymptotically dependent pairs, respectively. In the
formulation of the following assumption, s = (s1, s2) and si = (si

1, s
i
2) are used to denote

pairs. For brevity, xi = (xi
1, x

i
2) is also used to denote a point in [0,∞)2.
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CONDITION 2. For every s ∈ P , (X(s1),X(s2)) satisfies Condition 1(i) with functions
q(s), q

(s)
1 , c(s) and χ(s) := limt↓0 q(s)(t)/t exists. Intermediate sequences k(s) are chosen so

that m(s) := nq(s)(k(s)/n) → ∞ and
√

m(s)q
(s)
1 (k(s)/n) → 0. For pairs s1, s2 ∈ P , points

x1, x2 ∈ [0,∞)2 and sets J of two-dimensional vectors with entries in {1,2}, let

�n

(
s1, s2, x1, x2;J )= n√

m(s1)m(s2)
P

(
F

(si
j )(

X
(si

j ))≥ 1 − k(si )xi
j

n
, (i, j) ∈ J

)
.

We assume that the sequences k(s) are chosen such that the limits

�(s1,s2)(x1, x2) := lim
n→∞�n

(
s1, s2, x1, x2; {(1,1), (1,2), (2,1), (2,2)

})
, s1, s2 ∈ P,

�(s1,s2,j)(x1, x2) := χ(s2) lim
n→∞�n

(
s1, s2, x1, x2; {(1,1), (1,2), (2, j)

})
,

s1 ∈ P, s2 ∈ PD,

�(s1,j1,s2,j2)(x1, x2) := χ(s1)χ(s2) lim
n→∞�n

(
s1, s2, x1, x2; {(1, j1), (2, j2)}), s1, s2 ∈ PD,

exist for all j, j i ∈ {1,2}, and that the convergence is locally uniform over x1, x2 ∈ [0,∞)2.

We next discuss the above condition in three special cases of particular interest. The first
two are processes in the domain of attraction of max-stable processes and inverted max-stable
processes. The third one is a mixture process appearing in Wadsworth and Tawn (2012),
which can have asymptotically dependent and independent pairs simultaneously.

EXAMPLE 10 (Example 4, continued). If Y is in the max-domain of attraction of a max-
stable process, then X is in the max-domain of attraction of a max-stable distribution G on
R

d with stable tail dependence function

�(x1, . . . , xd) := lim
t↓0

1

t
P
(
F (1)(X(1))≥ 1 − tx1 or . . . or F (d)(X(d))≥ 1 − txd

)
, xj ≥ 0;

see equation (1.1). If moreover the convergence is locally uniform over (x1, . . . , xd) ∈
[0,∞)d and if every pair is asymptotically dependent, then Condition 2 holds. Note that this
is automatically satisfied if Y itself is max-stable. The sequences k(s) can be chosen all equal
to k, say, and for every pair s, m(s)/k → χ(s) > 0. The sequences m(s) can also be chosen
all asymptotically equivalent to m, say, by choosing k(s) = m/χ(s). The limiting covariance
terms can all be deduced from � by straightforward calculations.

EXAMPLE 11 (Example 5, continued). If Y is an inverted max-stable process, then X

has an inverted max-stable distribution, and we assume that the associated stable tail depen-
dence function � is componentwise strictly increasing. The latter is trivially satisfied if X has
a positive density. Then if all the pairwise functions �(s) satisfy the quadratic expansion intro-
duced in Example 8, Condition 2 is satisfied and the sequences k(s) can be chosen so that the
m(s) are all equal, that is, for every pair s ∈ P , m(s) = m for some intermediate sequence m.
Here, PD is empty so the only required covariance terms are (see Section S3)

�(s1,s2)(x1, x2)=
{
c(s)(x1

1 ∧ x2
1 , x1

2 ∧ x2
2
)

s1 = s2 = s,

0 s1 �= s2.

For instance, any inverted Brown–Resnick process (or rather the implied inverted d-
dimensional Hüsler–Reiss distribution corresponding to the d observed locations) satisfies
Condition 2 as long as the aforementioned d-variate distribution has a density. The latter can
easily be checked (e.g., Engelke and Hitz ((2020), Corollary 2)).
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EXAMPLE 12 (Wadsworth and Tawn ((2012), Section 4)). Let Z be a max-stable process
and Z′ be an inverted max-stable process, both with unit Fréchet margins. Suppose that Z′
satisfies the monotonicity condition stated in Example 11, and additionally that none of its
pairwise distributions (Z′(u1),Z

′(u2)) is perfectly independent. Let a ∈ (0,1) and define the
process Y by

Y(u) := max
{
aZ(u), (1 − a)Z′(u)

}
.

Then Y also has unit Fréchet margins. If Z becomes independent at a certain spatial distance,
the process Y transitions between asymptotic dependence and independence at that distance.
An instance of such a max-stable process Z is found in the second example after Theorem 1
of Schlather (2002), assuming that the Radius R of the random disks is bounded (see also
Davison, Padoan and Ribatet ((2012), equation (23) and the discussion that precedes)).

The process Y can be shown to satisfy Condition 2 if the sequences k(s) are chosen so that
the m(s) are all equal. The terms �(s1,s2), �(s1,s2,j) and �(s1,j1,s2,j2) are mostly determined
by the process Z, as in Example 10; see Section S3 in the online supplement for details.

4.2.1. Joint distribution of nonparametric estimators. The joint limiting behavior of the
processes ĉ

(s)
n relies on ((W(s))s∈P , (W(s,j))s∈PD,j∈{1,2}), a collection of centered Gaus-

sian processes on [0,∞)2. The covariance between W(s)(x, y) and W(s′)(x′, y′) is given by
�(s,s′)((x, y), (x′, y′)), the covariance between W(s)(x, y) and W(s′,j)(x′, y′) takes the form
�(s,s′,j)((x, y), (x′, y′)), and the covariance between W(s,j)(x, y) and W(s′,j ′)(x′, y′) is equal
to �(s,j,s′,j ′)((x, y), (x′, y′)). For s ∈ PI , let B(s) = W(s) and for s ∈ PD , let

B(s) = W(s) − ċ
(s)
1 W(s,1) − ċ

(s)
2 W(s,2),

where ċ
(s)
j are defined similar to ċj in Section 4.1.1.

THEOREM 4 (Asymptotic normality of ĉ
(s)
n ). Assume Condition 2. Then(

W(s)
n

)
s∈P := (√

m(s)
(
ĉ(s)
n − c(s)))

s∈P �
(
B(s))

s∈P

in the product space (L∞([0, T ]2), dhypi)
|P|, for any T < ∞. The same remains true if each

k(s) is replaced by the data-dependent sequence k̂(s) as described after Condition 1.

The preceding result can be applied in all generality as long as the four-dimensional tails
of the spatial process of interest are sufficiently smooth. The admissible settings include, but
are far from limited to, Examples 10 to 12.

According to Bücher, Segers and Volgushev (2014), convergence in the hypimetric is
equivalent to uniform convergence when the limit is a continuous function. The process B(s)

clearly has almost surely continuous sample paths under asymptotic independence, as well
as under asymptotic dependence if the partial derivatives of c exist everywhere and are con-
tinuous. It follows that in those cases W

(s)
n converges in (�∞([0, T ]2),‖ · ‖∞). In fact, one

may replace the product space in the result above by
⊗

s∈P D
(s), where D

(s) represents ei-
ther �∞([0, T ]2) equipped with the supremum distance (if s ∈ PI or c has continuous partial
derivatives) or L∞([0, T ]2) equipped with the hypimetric (otherwise). In particular, for pro-
cesses where every pair is asymptotically independent such as inverted max-stable processes,
the hypimetric can be replaced by the supremum distance everywhere.
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4.2.2. Asymptotics for parametric estimators. We now show how Theorem 4 leads to
asymptotic results for the parametric estimators ϑ̂n and ϑ̃n introduced in equations (3.8) and
(3.9). Recall the setting of Section 3.3, and in particular the functions h(s) :  → ̃ and the
relation c(s) = ch(s)(ϑ0)

. Similar to the bivariate setting, define

�(s) : ̃ ×R+ →R
q, �(s)(θ, σ ) = σ

∫
gcθ dμL −

∫
gc(s) dμL.

In the bivariate setting, we required � to be differentiable and have a unique well-separated
zero. In the spatial setting, we need a comparable assumption.

CONDITION 3. For every pair s ∈ P , the functions �(s) and h(s) are continuously
differentiable at the points (h(s)(ϑ0),1) and ϑ0, respectively, with Jacobian matrices
J�(s)(h(s)(ϑ0),1) and Jh(s)(ϑ0) of full ranks p̃ + 1 and p. Additionally, (i) or (ii) holds.

(i) The functions �(s) and ϑ �→ (h(s)(ϑ) − h(s)(ϑ0))s∈P have a unique, well-separated
zero at the points (h(s)(ϑ0),1) and ϑ0, respectively.

(ii) The function (ϑ,σ ) �→ (�(s)(h(s)(ϑ), σ (s)))s∈P as a function on  × R
|P|
+ has a

unique, well-separated zero at the point (ϑ0,1, . . . ,1).

Assuming both parts of Condition 3, we now introduce the notation that is needed to define
the limiting covariance matrices of the two estimators. In the following, elements of a vector
x ∈ R

q|P| are ordered by pair s ∈ P first, and then by dimension j ∈ {1, . . . , q}. The same
convention is used when ordering the rows or columns of a matrix.

Letting B(s) denote the limiting Gaussian processes appearing in Theorem 4, consider the
matrix A ∈R

q|P|×q|P| with blocks of the form

A(s,s′) :=
∫
[0,T ]4

g(x, y)g
(
x′, y′)�

Cov
(
B(s)(x, y);B(s′)(x′, y′))dx dy dx′ dy′.

Let D ∈ R
p̃|P|×q|P| be a block-diagonal matrix with blocks given by

(4.4) D(s) := [(
J�(s)

(
h(s)(ϑ0),1

)�
J�(s)

(
h(s)(ϑ0),1

))−1
J�(s)

(
h(s)(ϑ0),1

)�]
1:p̃,1:q ∈R

p̃×q,

where s ∈ P and [M]1:p̃,1:q indicates the submatrix consisting of rows 1 to p̃ and columns 1
to q of the matrix M . Define J1 ∈ R

p̃|P|×p by stacking the matrices Jh(s)(ϑ0), s ∈ P , on top of
each other. Denote by (e(s))� the unit vector in R

|P| with a one in the position corresponding
to the pair s and let J2 ∈ R

q|P|×(p+|P|) be obtained by stacking the matrices

J�(s)

(
h(s)(ϑ0),1

) [Jh(s)(ϑ0) 0
0 e(s)

]
∈R

q×(p+|P|), s ∈ P,

on top of each other. Finally, define

�1 = (
J�

1 J1
)−1

J�
1 DAD�J1

(
J�

1 J1
)−1

, �2 = (
J�

2 J2
)−1

J�
2 AJ2

(
J�

2 J2
)−1

.

THEOREM 5 (Asymptotic normality of the estimators of ϑ). Assume Condition 2 and
suppose that the sequences m(s) are all asymptotically equivalent to m, say. Then under
Condition 3(i), the estimator defined in equation (3.8) satisfies√

m(ϑ̂n − ϑ0)�N(0,�1)

and under Condition 3(ii), the estimators defined in equation (3.9) satisfy

√
m

((
ϑ̃n,

nζ̃n

m

)
− (ϑ0,1, . . . ,1)

)
� N(0,�2),

where �1 and �2 are as above. The same remains true if each k(s) is replaced by the data-
dependent sequence k̂(s), based on the same sequence m, as described after Condition 1.
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The assumption of asymptotic equivalence of all m(s) can be substantially relaxed. Other-
wise, a simple way to satisfy it is to select one m and use data-driven sequences k̂(s).

5. Simulations.

5.1. Bivariate distributions. In this section, we study the finite sample behavior of the
estimator introduced in the paper. We simulate samples from the bivariate vector (X+X′, Y +
Y ′), where (X,Y ) is the signal and (X′, Y ′) is and independent noise vector. We consider
three different models for the bivariate distributions (X,Y ).

(M1) The inverted Hüsler–Reiss model from Example 2(i) with unit Fréchet margins,
whose corresponding class of functions c takes the form cθ (x, y) = (xy)θ where θ ∈ (1/2,1].

(M2) The inverted asymmetric logistic model from Example 2(ii) with fixed r = 2 and
unit Fréchet margins. We fit the full parametric model {cθ (x, y) = xθ1yθ2 : θ ∈ }, where
 := {(θ1, θ2) ∈ (0,1]2 : θ1 + θ2 > 1}, even though due to our choice of r the only attainable
parameters are approximately the square [0.7,1]2; see Figure 4.

(M3) The random scale construction from Example 3 where we fix αW = 1 and vary αR .
The collection of possible functions c = cλ, λ ∈ (0,2) is given in Table 1.

Figures S1 to S3 in the online supplement show realizations of models M1–M3 corresponding
to different parameter values and rescaled to unit exponential margins for illustration.

As a noise vector we simulate samples of (X′, Y ′), where X′ and Y ′ are independent with
Pareto distribution function 1 − 1/x4, x ≥ 1. Note that this tail is lighter than that of the
marginal distributions in all three models; it can be shown that this additive noise does not
affect the functions q and c of (X,Y ).

All of the results that follow are based on 1000 simulation repetitions and samples of
size n = 5000. In all the simulations, we use the same weight function (represented by g

in equation (3.5)), which we now describe. Consider the following rectangles: I1 := [0,1]2,
I2 := [0,2]2, I3 := [1/2,3/2]2, I4 := [0,1] × [0,3] and I5 := [0,3] × [0,1]. The function
g :R2 →R

5 is given by

(5.1) g(x, y) := (
1
{
(x, y) ∈ I1

}
/a1,θREF, . . . ,1

{
(x, y) ∈ I5

}
/a5,θREF

)�
,

where aj,θREF := ∫
Ij

cθREF dμL and θREF is simply a reference point in the parameter space
that ensures that all components of g have comparable magnitude. In the three models above,
the reference points are 0.6, (0.6,0.6) and 1, respectively. The rectangles are chosen in order
to capture various aspects of the function c: I3 contains information about the unknown scale
ζ (recall that we scale c so that c(1,1) = 1). The rectangles I1, I2 are geared toward deter-
mining homogeneity properties of c since I2 = 2I1 and are especially useful for estimating η.
The rectangles I4, I5 are informative about asymmetry of the function c with respect to its ar-
guments. Different choices of the weight function would be possible, and the best choice will
be different for each model under consideration and even for each specific parameter value
within a given model class. Nevertheless, the aforementioned choice seems close to optimal
for all the models considered here. In Section S6 of the online supplement, a sensitivity anal-
ysis is carried out where we repeat the simulation study with different weight functions that
are constructed by considering only some of the rectangles I1, . . . , I5 instead of all five. See
also Einmahl, Krajina and Segers (2008), Einmahl, Krajina and Segers (2012) for a related
discussion in the estimation of stable tail dependence functions.

5.1.1. The inverted Hüsler–Reiss model (M1). Figure 1 shows the effect of k on the es-
timation performance of θ̂n from equation (3.6) in terms of absolute bias and root MSE for
the three parameter values θ = 0.6, 0.75 and 0.9. We observe that for larger values of θ (or



2570 M. LALANCETTE, S. ENGELKE AND S. VOLGUSHEV

FIG. 1. Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of θ as a function of k, based
on 1000 samples of size 5000 from model M1 with parameter values 0.6, 0.75 and 0.9, from left to right.

smaller values of η, corresponding to more independence in the extremes) larger values of k

lead to the best RMSE. This is in line with our theory as, for fixed k, smaller η corresponds
to smaller values of m, and hence larger asymptotic variance.

An analysis of θ̂n for a finer range of parameter values is provided in Figure 2. Motivated
by the findings in Figure 1, we fix k = 800; this choice leads to reasonable performance across
all parameter values. Overall, the results are satisfactory, with a more pronounced negative
bias for smaller values of θ and more variance for increasing θ .

5.1.2. The inverted asymmetric logistic model (M2). Figure 3 shows the impact of k on
estimated parameter values for three different choices of θ . Since here the parameter is two-
dimensional, we consider (and estimate) the Euclidean bias and RMSE of the estimator θ̂n,
defined as ‖E[θ̂n − θ ]‖ and (E‖θ̂n − θ‖2)1/2, respectively.

Similar to the pattern observed in Figure 1, we see that smaller values of η necessitate
larger values of k in order to achieve a good balance between bias and variance.

Figure 4 shows the performance of the proposed M-estimator for a range of different pa-
rameters (θ1, θ2) with Euclidean bias in the left panel and RMSE in the right panel; the value
k = 800 is fixed throughout. Since the relation (ν,φ) �→ (θ1, θ2) is not easily invertible, we
selected a grid of values of (ν,φ) ∈ [0,1]2, calculated all the corresponding points θ and kept
the values for which θj ≤ 0.95, j = 1,2.

We observe that the estimators perform better for parameter values close to the diagonal,
with larger bias and variance for more asymmetric parameter values. The overall estimation
accuracy is reasonably good, with worst case RMSE values around 0.07.

FIG. 2. Box plots of the M-Estimators of θ based on 1000 samples of size 5000 for each parameter value.
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FIG. 3. Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of θ as a function of k, based on
1000 samples of size 5000 from model M2 with parameter θ equal to (0.72,0.72), (0.75,0.91) and (0.91,0.91),
from left to right. In the original parametrization, the corresponding values of (ν,φ) are (0.94,0.94), (0.44,0.94)

and (0.31,0.31), respectively.

5.1.3. The Pareto random scale model (M3). Figure 5 shows the effect of k on the perfor-
mance of our M-estimator λ̂n in terms of absolute bias and root MSE for the three parameter
values λ = 0.4, 1 and 1.6. We notice that the estimator is considerably more biased at λ = 1
than at other parameter values. This is expected as, according to Table 1, the bias function
q1 vanishes only at a logarithmic rate when λ = 1, compared to a polynomial rate elsewhere.
Moreover, like in the other models, we observe that for more independent data (characterized
by larger λ), larger values of k are required to drive down the variance of the estimator.

An analysis of λ̂n for a finer range of parameter values is provided in Figure 6. Motivated
by Figure 5, we fix k = 400, which approximately minimizes the maximal RMSE. Overall
the estimator is very precise for small values of λ, but incurs a bias around λ = 0.8 where
it struggles to distinguish between values slightly smaller and slightly larger than 1. This
phenomenon is not completely unexpected; a close look at Table 1 reveals that cλ has almost
(but not quite) a symmetry around the point λ = 1, for example, c0.8 is very similar in shape
to c1.2. This point also corresponds to the transition between asymptotic dependence and
independence, which makes estimation challenging.

5.2. Spatial models. In this section, we illustrate the performance of the proposed
methodology for spatial data. The candidate class for cθ results from inverted Brown–Resnick

FIG. 4. Absolute bias (left) and RMSE (right) of the M-estimator of θ = (θ1, θ2) as a function of θ , based on
1000 samples of size 5000 from model M2.
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FIG. 5. Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of λ as a function of k, based
on 1000 samples of size 5000 from model M3 with parameter values 0.4, 1 and 1.6, from left to right.

processes with fractal variograms (see Example 6) and takes the form

(5.2) c
(s)
ϑ (x, y) = (xy)θ

(s)

, θ (s) = θ
(
�(s);ϑ) := �

(
1

2

(
�(s)/β

)α/2
)
, s ∈ P,

where ϑ = (α,β) ∈ (0,2]×R+ and �(s) is the Euclidean distance between the two locations
in pair s (measured in units of latitude). Motivated by the data application in the following
section, the true parameter values are set as ϑ0 = (1,3) and the values for �(s) are obtained
from 40 randomly sampled pairs of locations in that data set; see Figure S5 in the online
supplement for a histogram of the distances in this sample.

To evaluate the performance of our estimators, we simulate 1000 independent data sets,
each of size 5000, of an inverted Brown–Resnick process with unit Fréchet margins and
fractal variogram from equation (3.7) with α = 1, β = 3. Following the bivariate simulations,
to each of the 40 components of the data, we add an independent random variable with Pareto
distribution function 1 − 1/x4, x ≥ 1. Using the same weight function g as in the bivariate
simulations (see equation (5.1)), we compute the two estimators introduced in equations (3.8)
and (3.9). Since the performance of both estimators turns out to be very similar, we only report
results for the least squares estimator from equation (3.8) here and defer all simulations for
the estimator (3.9) to Section S6 in the online supplement.

Following the discussion in Remark 1, we fix a value m and select each k(s) such that
Q̂

(s)
n (k(s)/n, k(s)/n) = m. The first two panels of Figure 7 show the absolute bias and RMSE

of the estimators α̂ and β̂ , respectively, as functions of m ∈ {75,100, . . . ,500}. We observe
that the RMSE for both estimators is relatively large across all values of m. Interestingly,
this does not result in a bad performance in estimating the function θ(·;ϑ). Indeed, the last

FIG. 6. Box plots of the M-Estimators of λ based on 1000 samples of size 5000 for each parameter value.
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FIG. 7. Left and middle columns: Bias (solid line) and RMSE (dotted line) of the estimators of the
two spatial parameters α (left) and β (middle) as a function of m. Right: Mean of the supremum error
sup0≤�≤3 |θ(�; α̂, β̂) − θ(�;α,β)| as a function of m.

panel of Figure 7 shows averaged (over simulation runs) values for sup0≤�≤3 |θ(�; ϑ̂) −
θ(�;ϑ)| and indicates a good overall performance; note that the observed values of � are
all smaller than 3 (see Figure S5 in the online supplement). This can be explained by the fact
that different values of (α,β) can lead to somewhat similar curves in the range of interest.
This is further illustrated in the left panel of Figure 8 where a random sample of 50 estimated
functions θ(�; ϑ̂) is displayed.

We conclude this section by fixing m = 150 and comparing the performance of estimators
for θ(s) based on a bivariate sample at a given distance and the spatial estimator discussed
above. Boxplots corresponding to five pairs of stations with distances �(s) ≈ 0.5,1, . . . ,2.5
are shown in the left panel of Figure 8. As expected from the theory, using the spatial estima-
tor is advantageous as it allows to combine information from different distances and leads to
a reduced variance.

6. Application to rainfall data. In a data set introduced in Le et al. (2018), rainfall was
measured daily from 1960 to 2009 at a set of 92 different locations in the state of Victoria,
southeastern Australia, for a total of n = 18,263 measurements. The conclusions in that paper
are that an asymptotically independent model is suitable. A subset of 40 locations, for a total
of 780 pairs, was randomly sampled; see the right panel of Figure 9. To the data at those
selected locations, we fit the same tail model as in Section 5.2, given in equation (5.2). The

FIG. 8. Left panel: Estimators of θ(�) for 5 different distances. For each distance, bivariate M-estimator θ̂
(s)
n

(green) and spatial estimator θ(�(s); α̂, β̂) (blue) based on the d = 40 locations. Right panel: 50 sampled curves
θ(·; α̂, β̂). Blue represents the true curve θ(·;α,β).
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FIG. 9. Left: Estimated parameters θ̂
(s)
n against the distances �(s). The black line represents the estimated

curve θ(·;1.55,2.24). Middle: Estimated curve θ(·; α̂, β̂) for the least squares estimator with different values
of m. Right: The 40 sampled locations in the state of Victoria, southeastern Australia.

weight function g that we use is the same as before and as in Section 5.2, we make use of
Remark 1 by fixing a value m and choosing each k(s) accordingly.

We set m = 400. The left panel of Figure 9 shows the 780 pairwise estimators θ̂
(s)
n plotted

against the distances �(s). Despite some estimates at the boundary of the parameter space,
the results do not provide much evidence for asymptotic dependence, whereas all estimates
are away from the boundary for distances of at least 0.3 units of latitude, strongly suggesting
asymptotic independence at these distances. Our two estimators (3.8) and (3.9) of (α,β) yield
estimates (α̂, β̂) of (1.55, 2.24) and (1.56, 2.24), respectively. They are extremely similar,
as hinted by the simulation study from Section 5.2. The curve θ(·; α̂, β̂) corresponding to
the least squares estimator is also shown in the left panel of Figure 9. The middle panel of
Figure 9 displays similar curves for the least squares estimator when m varies from 200 to
1000. It shows that the estimated curve is robust with respect to the choice of m.
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SUPPLEMENTARY MATERIAL

Supplement to “Rank-based estimation under asymptotic dependence and indepen-
dence, with applications to spatial extremes” (DOI: 10.1214/20-AOS2046SUPP; .pdf).
The Supplementary Material (Lalancette, Engelke and Volgushev (2021)) is divided into six
sections. Section S1 contains the proofs of all main results, with a number of necessary tech-
nical results deferred to Section S2. Sections S3 and S4 present proofs of several claims from
different examples in the paper. A brief discussion of computational complexity in spatial
estimation is given in Section S5 and additional simulation results appear in Section S6.
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