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Introduction

Estimation of a multivariate EVD is usually done in two steps
1 Estimate its margins
2 Estimate its dependence structure

Strategies to estimate the extremal dependence structure depend on
whether Asymptotic dependence on Asymptotic independence

Our objective: Propose a unifying way to do so in both situations
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Introduction (with math)

Suppose (X ,Y ) has a continuous bivariate CDF F with marginals
F1 and F2

Under regularity conditions in the tails (satisfied if F is in a MDA),

L(x , y) := lim
t→0

1

t
P (F1(X ) ≥ 1− tx or F2(Y ) ≥ 1− ty) (1)

exists for every (x , y) ∈ [0,∞)2

Equivalently, we may study the function

R(x , y) := lim
t→0

1

t
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) (2)

= x + y − L(x , y)

L is called stable tail dependence function, or simply the L-function
([Huang, 1992, de Haan and Ferreira, 2006])

If F is in a MDA, L, R and the exponent measure are all equivalent
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Asymptotic independence

A popular approach to estimate the extremal dependence between X
and Y is to assume eq. (1)/eq. (2) and estimate L or R

Essentially, L allows an approximation of the probability of “at least
one exceedance”, and R, if it is not 0, allows for an approximation
of the probability of joint exceedances

But it may be that P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) = o(t) for
every (x , y) ∈ [0,∞)2, which makes R(x , y) = 0

X and Y are then said to be asymptotically independent (AI).
Otherwise, they are deemed asymptotically dependent (AD)

Note that if (X ,Y ) ∈ D(G ) for a bivariate EVD G , X and Y are AI
iff the two components of G are independent
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Another representation of the extremal dependence

Instead of the function R, assume the existence of

c(x , y) := lim
t→0

1

q(t)
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty)

for a scaling function q that makes the limit non-zero

Then there exists a coefficient of tail dependence η ∈ (0, 1] such
that

1 q is (1/η)–RV at 0
2 c is (1/η)–homogeneous (c(ax , ay) = a1/ηc(x , y))

[Ledford and Tawn, 1997, Draisma et al., 2004]

Essentially, q describes the strength of tail dependence and c
describes the shape of the joint tail, but they are not completely
unrelated

Advantage: includes both AI (q(t) = o(t)) and asymptotic
dependence (AD) (q(t) ∼ t), but is not trivial in either case

Note: For c to be unique, we assume c(1, 1) = 1
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The estimator

Let (X1,Y1), ..., (Xn,Yn) be independent copies of (X ,Y )

The definition of c suggests the “estimator”

ĉn(x , y) :=
1

q(k/n)

1

n

n∑
i=1

1

{
F̂1(Xi ) ≥ 1− k

n
x , F̂2(Yi ) ≥ 1− k

n
y

}
,

where F̂j are the empirical CDF’s

This is a rank-based estimator (can be rewritten as a function of
ranks)

It appears in [Draisma et al., 2004]
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Asymptotic normality of ĉn

Assume that as t → 0,

1

q(t)
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) = c(x , y) + O(q1(t))

uniformly over {(x , y) ∈ [0,∞)2 : x2 + y2 = 1}
Assume that q is positive measurable, c is not everywhere 0 and

q1(t) = O
(

1
log(1/t)

)
For an intermediate sequence k , define another sequence by
m = nq(k/n). Assume that m → ∞ and mq1(k/n)

2 → 0

Theorem (L, Engelke and Volgushev (2019))

Then, there exist Gaussian processes W (1) and W (2) on [0,∞)2 such
that

1 Under AI,
√
m (ĉn − c)⇝W (1) (in ℓ∞

(
[0,T ]2

)
).

2 Under AD,
√
m (ĉn − c)⇝W (2) (in the topo. of hypi-convergence

for locally bounded functions ([Bücher et al., 2014])).
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Important remarks

Weak assumptions (no smoothness on c , bias bounded by a very
slow term)

Basically,

√
m (ĉn(x , y)− c(x , y)) = Something︸ ︷︷ ︸

⇝W (1)

+
√
m (c(x̂n, ŷn)− c(x , y)) ,

where x̂n and ŷn are based on the empirical quantiles of X and of Y

“Something” is what one would obtain with known marginal
distributions F1,F2. It is a fairly standard empirical process

The other term comes from the error in estimating the marginals

Under AD, it converges to a non trivial limit

Under AI, it disappears because convergence of x̂n and ŷn is faster
than convergence of “Something” to W (1) (based on more data)
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Example 1: Inverted max-stable distributions

Suppose that (1/X , 1/Y ) has a bivariate max-stable distribution, with
L-function L. Then under a mild smoothness assumption on L, (X ,Y )
satisfies our assumptions, with

q(t) = tL(1,1), c(x , y) = x L̇1(1,1)y L̇2(1,1), q1(t) =
1

log(1/t)
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Example 2: A random scale construction

Suppose R ∼ Pareto (α), Wj ∼ Pareto (1), where R,W1,W2 are
independent. Then (X ,Y ) = R(W1,W2) satisfies our assumptions

Range of α q(t) c(x, y) q1(t)

(0, 1) Kαt (1 − r(α))(x ∧ y) + r(α)(x ∧ y)1/α(x ∨ y)1−1/α t1/α−1

1 Kαt
log(1/t)+log log(1/t) (x ∧ y)

(
1 + 1

2 log
(

x∨y
x∧y

))
1

log(1/t)

(1, 2) Kαtα (x ∧ y)(x ∨ y)α−1 t(α−1)∧(2−α)

2 Kαt2 log(1/t) xy 1
log(1/t)

(2,∞) Kαt2 xy tα−2

r(α) =
α

2

(
1 − (2 − α)(1 − α)1/α−1

)
∈ (0, 1)

Only thing to know: α < 1 ⇒ AD and α ≥ 1 ⇒ AI
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Why a parametric estimator?

Parametric models often allow for a nice interpretation

The non-parametric estimator ĉn is not a proper function c

More importantly, recall that ĉn depends on the unknown scaling
function q (through m = nq(k/n))

The following parametric estimation procedure fixes this problem
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The M-estimator we need

Assume a parametric family of functions {cθ : θ ∈ Θ ⊂ Rp}
Idea: Choose θ as to minimize∥∥∥∥∥

∫
[0,T ]2

g(x , y)cθ(x , y) dx dy −
∫
[0,T ]2

g(x , y)ĉn(x , y) dx dy

∥∥∥∥∥ ,
where g : [0,T ]2 → Rq is a vector of arbitrary weight functions

[Einmahl et al., 2012] proposed an identical approach to estimate
the L-function, but recall that the L-function is not informative
under AI

Problem: ĉn can only be calculated up to the unknown scaling m

Solution: Since

mĉn(x , y) =
n∑

i=1

1

{
F̂1(Xi ) ≥ 1− k

n
x , F̂2(Yi ) ≥ 1− k

n
y

}
can be calculated, simply multiply the second integral by m

To adjust, multiply left integral by a new unknown parameter
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The M-estimator we deserve

We obtain the following objective function:

Ψn(θ, σ) :=∥∥∥∥∥σ
∫
[0,T ]2

g(x , y)cθ(x , y) dx dy −m

∫
[0,T ]2

g(x , y)ĉn(x , y) dx dy

∥∥∥∥∥
By minimizing this objective function, we hope that cθ will estimate
c and σ will estimate m
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Asymptotic normality of the M-estimator

Suppose that the true function generating the data is cθ0 , θ0 ∈ Θ,
and that the map

(θ, ξ) 7→ ξ

∫
[0,T ]2

g(x , y)cθ(x , y) dx dy

is continuously differentiable at (θ0, 1) with full-rank Jacobian.

Assume the setting of the previous theorem

Theorem (L, Engelke and Volgushev (2019))

Then if (θ̂n, σ̂n) is an estimator such that Ψn(θ̂n, σ̂n) = oP(
√
m),

√
m

((
θ̂n,

σ̂n

m

)
− (θ0, 1)

)
⇝ N (0,Σ(θ0)) .
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Summary

We use a higher order representation of the tail dependence that
naturally encompasses AD and AI

It generalizes the L and R functions

We obtain asymptotically normal estimators of the shape of tail
dependence (represented by c)

Because c is homogeneous of order 1/η, our estimator of c yields an
estimator for η

Thank you!
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