Rank-based M-Estimation for Tail Dependence and Independence

Michaël Lalancette¹

Joint work with Sebastian Engelke² and Stanislav Volgushev¹

¹Department of Statistical Sciences, University of Toronto

²Research Center for Statistics, University of Geneva

July 4, 2019

- 2 Non-parametric estimation of c
- 3 Parametric estimation of c

1 Introduction: Bivariate tails and Asymptotic independence

- 2 Non-parametric estimation of c
- 3 Parametric estimation of c

- Estimation of a multivariate EVD is usually done in two steps
- Estimate its margins
 Estimate its dependence structure
- Strategies to estimate the extremal dependence structure depend on whether Asymptotic dependence on Asymptotic independence
- Our objective: Propose a unifying way to do so in both situations

Introduction (with math)

- Suppose (X, Y) has a continuous bivariate CDF F with marginals F_1 and F_2
- Under regularity conditions in the tails (satisfied if F is in a MDA),

$$L(x,y) := \lim_{t \to 0} \frac{1}{t} \mathbb{P}(F_1(X) \ge 1 - tx \text{ or } F_2(Y) \ge 1 - ty)$$
 (1)

exists for every $(x,y) \in [0,\infty)^2$

• Equivalently, we may study the function

$$R(x,y) := \lim_{t \to 0} \frac{1}{t} \mathbb{P} \left(F_1(X) \ge 1 - tx, F_2(Y) \ge 1 - ty \right)$$
(2)
= $x + y - L(x,y)$

- *L* is called *stable tail dependence function*, or simply the *L*-function ([Huang, 1992, de Haan and Ferreira, 2006])
- If F is in a MDA, L, R and the exponent measure are all equivalent

- A popular approach to estimate the extremal dependence between X and Y is to assume eq. (1)/eq. (2) and estimate L or R
- Essentially, *L* allows an approximation of the probability of "at least one exceedance", and *R*, **if it is not 0**, allows for an approximation of the probability of joint exceedances
- But it may be that $\mathbb{P}(F_1(X) \ge 1 tx, F_2(Y) \ge 1 ty) = o(t)$ for every $(x, y) \in [0, \infty)^2$, which makes R(x, y) = 0
- X and Y are then said to be *asymptotically independent* (AI). Otherwise, they are deemed *asymptotically dependent* (AD)
- Note that if $(X, Y) \in \mathcal{D}(G)$ for a bivariate EVD G, X and Y are AI iff the two components of G are independent

Another representation of the extremal dependence

• Instead of the function R, assume the existence of

$$c(x,y) := \lim_{t\to 0} \frac{1}{q(t)} \mathbb{P}\left(F_1(X) \ge 1 - tx, F_2(Y) \ge 1 - ty\right)$$

for a scaling function q that makes the limit non-zero

• Then there exists a coefficient of tail dependence $\eta \in (0,1]$ such that

2 c is
$$(1/\eta)$$
-homogeneous $(c(ax, ay) = a^{1/\eta}c(x, y))$

- [Ledford and Tawn, 1997, Draisma et al., 2004]
- Essentially, q describes the strength of tail dependence and c describes the shape of the joint tail, **but they are not completely unrelated**
- Advantage: includes both AI (q(t) = o(t)) and asymptotic dependence (AD) $(q(t) \sim t)$, but is not trivial in either case
- Note: For c to be unique, we assume c(1,1) = 1

1 Introduction: Bivariate tails and Asymptotic independence

2 Non-parametric estimation of c

3 Parametric estimation of c

- Let $(X_1, Y_1), ..., (X_n, Y_n)$ be independent copies of (X, Y)
- The definition of c suggests the "estimator"

$$\hat{c}_n(x,y) := \frac{1}{q(k/n)} \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{\hat{F}_1(X_i) \ge 1 - \frac{k}{n} x, \hat{F}_2(Y_i) \ge 1 - \frac{k}{n} y\right\},$$

where \hat{F}_j are the empirical CDF's

- This is a rank-based estimator (can be rewritten as a function of ranks)
- It appears in [Draisma et al., 2004]

Asymptotic normality of \hat{c}_n

• Assume that as $t \to 0$,

$$\frac{1}{q(t)}\mathbb{P}(F_1(X) \ge 1 - tx, F_2(Y) \ge 1 - ty) = c(x, y) + O(q_1(t))$$

uniformly over $\{(x,y)\in [0,\infty)^2: x^2+y^2=1\}$

- Assume that q is positive measurable, c is not everywhere 0 and $q_1(t)=O\left(\frac{1}{\log(1/t)}\right)$
- For an intermediate sequence k, define another sequence by m = nq(k/n). Assume that $m \to \infty$ and $mq_1(k/n)^2 \to 0$

Theorem (L, Engelke and Volgushev (2019))

Then, there exist Gaussian processes $W^{(1)}$ and $W^{(2)}$ on $[0,\infty)^2$ such that

- Under AI, $\sqrt{m}(\hat{c}_n c) \rightsquigarrow W^{(1)}$ (in $\ell^{\infty}([0, T]^2)$).
- Our AD, √m (ĉ_n − c) → W⁽²⁾ (in the topo. of hypi-convergence for locally bounded functions ([Bücher et al., 2014])).

Important remarks

• Weak assumptions (no smoothness on *c*, bias bounded by a very slow term)

• Basically,

$$\sqrt{m}\left(\hat{c}_n(x,y)-c(x,y)\right)=\underbrace{\mathsf{Something}}_{\rightsquigarrow W^{(1)}}+\sqrt{m}\left(c(\hat{x}_n,\hat{y}_n)-c(x,y)\right),$$

where \hat{x}_n and \hat{y}_n are based on the empirical quantiles of X and of Y

- "Something" is what one would obtain with known marginal distributions F₁, F₂. It is a fairly standard empirical process
- The other term comes from the error in estimating the marginals
- Under AD, it converges to a non trivial limit
- Under AI, it disappears because convergence of x̂_n and ŷ_n is faster than convergence of "Something" to W⁽¹⁾ (based on more data)

Suppose that (1/X, 1/Y) has a bivariate max-stable distribution, with *L*-function *L*. Then under a mild smoothness assumption on *L*, (X, Y) satisfies our assumptions, with

$$q(t) = t^{L(1,1)}, \quad c(x,y) = x^{\dot{L}_1(1,1)}y^{\dot{L}_2(1,1)}, \quad q_1(t) = \frac{1}{\log(1/t)}$$

Example 2: A random scale construction

Suppose $R \sim \text{Pareto}(\alpha)$, $W_j \sim \text{Pareto}(1)$, where R, W_1, W_2 are independent. Then $(X, Y) = R(W_1, W_2)$ satisfies our assumptions

Range of α	q(t)	c(x, y)	$q_1(t)$
(0,1)	K _α t	$(1-r(\alpha))(x \wedge y) + r(\alpha)(x \wedge y)^{1/\alpha}(x \vee y)^{1-1/\alpha}$	$t^{1/\alpha-1}$
1	$\frac{K_{\alpha}t}{\log(1/t) + \log\log(1/t)}$	$(x \wedge y) \left(1 + \frac{1}{2} \log \left(\frac{x \vee y}{x \wedge y}\right)\right)$	$\frac{1}{\log(1/t)}$
(1, 2)	$K_{lpha}t^{lpha}$	$(x \wedge y)(x \vee y)^{\alpha-1}$	$t^{(\alpha-1)\wedge(2-\alpha)}$
2	${\cal K}_lpha t^2 \log(1/t)$	ху	$\frac{1}{\log(1/t)}$
$(2,\infty)$	$K_{\alpha} t^2$	ху	$t^{\alpha-2}$

$$r(\alpha) = \frac{\alpha}{2} \left(1 - (2 - \alpha)(1 - \alpha)^{1/\alpha - 1} \right) \in (0, 1)$$

Only thing to know: $\alpha < 1 \Rightarrow \mathsf{AD}$ and $\alpha \geq 1 \Rightarrow \mathsf{AI}$

1 Introduction: Bivariate tails and Asymptotic independence

- 2 Non-parametric estimation of c
- \bigcirc Parametric estimation of c

- Parametric models often allow for a nice interpretation
- The non-parametric estimator \hat{c}_n is not a proper function c
- More importantly, recall that \hat{c}_n depends on the unknown scaling function q (through m = nq(k/n))
- The following parametric estimation procedure fixes this problem

The M-estimator we need

- Assume a parametric family of functions $\{c_{\theta} : \theta \in \Theta \subset \mathbb{R}^{p}\}$
- Idea: Choose θ as to minimize

$$\left\|\int_{[0,T]^2} g(x,y) c_{\theta}(x,y) \, dx \, dy - \int_{[0,T]^2} g(x,y) \hat{c}_n(x,y) \, dx \, dy\right\|,$$

where $g:[0,T]^2 \to \mathbb{R}^q$ is a vector of arbitrary weight functions

- [Einmahl et al., 2012] proposed an identical approach to estimate the *L*-function, but recall that the *L*-function is not informative under Al
- Problem: \hat{c}_n can only be calculated up to the unknown scaling m
- Solution: Since

...

$$m\hat{c}_n(x,y) = \sum_{i=1}^n \mathbb{1}\left\{\hat{F}_1(X_i) \ge 1 - \frac{k}{n}x, \hat{F}_2(Y_i) \ge 1 - \frac{k}{n}y\right\}$$

can be calculated, simply multiply the second integral by m

• To adjust, multiply left integral by a new unknown parameter

• We obtain the following objective function:

$$\Psi_n(\theta,\sigma) := \left\| \sigma \int_{[0,T]^2} g(x,y) c_\theta(x,y) \, dx \, dy - m \int_{[0,T]^2} g(x,y) \hat{c}_n(x,y) \, dx \, dy \right\|$$

• By minimizing this objective function, we hope that c_{θ} will estimate c and σ will estimate m

Asymptotic normality of the M-estimator

• Suppose that the true function generating the data is c_{θ_0} , $\theta_0 \in \Theta$, and that the map

$$(\theta,\xi)\mapsto \xi\int_{[0,T]^2}g(x,y)c_{\theta}(x,y)\,dx\,dy$$

is continuously differentiable at $(\theta_0, 1)$ with full-rank Jacobian.

Assume the setting of the previous theorem

Theorem (L, Engelke and Volgushev (2019))

Then if $(\hat{\theta}_n, \hat{\sigma}_n)$ is an estimator such that $\Psi_n(\hat{\theta}_n, \hat{\sigma}_n) = o_P(\sqrt{m})$,

$$\sqrt{m}\left(\left(\hat{\theta}_n,\frac{\hat{\sigma}_n}{m}\right)-(\theta_0,1)\right)\rightsquigarrow \mathcal{N}(0,\Sigma(\theta_0)).$$

- We use a higher order representation of the tail dependence that naturally encompasses AD and AI
- It generalizes the L and R functions
- We obtain asymptotically normal estimators of the shape of tail dependence (represented by *c*)
- Because c is homogeneous of order $1/\eta,$ our estimator of c yields an estimator for η

Thank you!

Bücher, A., Segers, J., and Volgushev, S. (2014). When Uniform Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hypographs. Ann. Stat., 42:1598-1634.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory. Springer.

Draisma, G., Drees, H., Ferreira, A., and de Haan, L. (2004). Bivariate Tail Estimation: Dependence in Asymptotic Independence. Bernoulli, 10:251-280.

Einmahl, J., Krajina, A., and Segers, J. (2012). An M-Estimator for Tail Dependence in Arbitrary Dimensions. Ann. Stat., 40:1764–1793.

Huang, X. (1992). Statistics of Bivariate Extreme Value Theory. PhD thesis, Erasmus University Rotterdam.

Ledford, A. and Tawn, J. (1997). Modelling dependence within joint tail regions. J. R. Stat. Soc. B, 59(2):475-499.