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Extreme Value Theory

▶ Very broadly, EVT is the field of statistics that studies how much we

can extrapolate to understand the data-generating mechanism

outside of the range of the data

▶ Given, say, 10 years of rainfall data, EVT tries to answer to

questions like

▶ What is a 1-in-100-years rainfall (or even sometimes 1-in-10 000

years)?

▶ What is the probability that on a given day at least xmm or rain

happen (where x is possibly larger than anything observed we have

oberved)?
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The Problem

▶ Consider a sample X1, . . .Xn ∼ X and the problem of estimating

P(X > x)

▶ For simplicity, X unbounded

▶ Two approaches

1. Use empirical probability 1
n

∑n
i=1 I {Xi > x}

2. Fit parametric model {Fθ}, get estimator θ̂, and use 1− Fθ̂(x)

▶ But what if x is out of sample range (i.e. x > maxi Xi )

1. Nonparametric estimator is 0

2. Parametric estimator is based on assumption that tails of the

parametric model are correct (uncheckable)
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Conditional Tail

▶ The problem: tail of the distribution S(x) := P (X > x) can a priori

be anything, independently of the ”central part” that is observed

▶ However, not true for the conditional tail

S(y | u) := P (X > u + y | X > u)

Theorem (Balkema, de Haan (1974), Pickands (1975))

For a very large class of distributions, as u → ∞,

S(y | u) −→
(
1 +

γy

σ

)−1/γ

, y > 0,

for some σ > 0 and γ ∈ R. That is, X − u | X > u approximately has a

GP(σ, γ) distribution.

▶ For γ = 0, (1 + γy/σ)−1/γ understood as e−y/σ
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Peaks-over-threshold Method

▶ Choose a threshold u that is large but in the sample range (say

around 80th sample percentile)

▶ Write P (X > x) = S(x) = S(u)S(x − u | u)
▶ S(u) can be estimated by sample proportion

▶ S(x − u | u) ≈ (1 + γ(x − u)/σ)−1/γ

▶ Parameters σ, γ are estimated by assuming that for every

observation Xi above u, Xi − u is approximately GP(σ, γ) distributed
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Bivariate Tail

▶ Consider random vector (X ,Y ) (for simplicity, X and Y are

unbounded)

▶ What does ”tail of (X ,Y )” even mean? Equivalently, what is a

bivariate extreme event?

▶ Most common definitions are probabilities of the form

P (X > x or Y > y) , P (X > x ,Y > y) , x , y large

▶ The marginal tails of X and Y can easily be modeled, but

unfortunately there exists no unique parametric model for

dependence structure in the tail
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Tail Dependence Modeling

▶ Use copula approach: suppose X and Y have continuous marginal

cdf F1 and F2

▶ Under regularity conditions in the tails (satisfied if (X ,Y ) is in a

max-domain of attraction),

ℓ(x , y) := lim
t→0

1

t
P (F1(X ) ≥ 1− tx or F2(Y ) ≥ 1− ty) (1)

exists for every (x , y) ∈ [0,∞)2

▶ Idea: model and estimate ℓ

▶ Then, for t arbitrarily small, use approximations

P (F1(X ) ≥ 1− tx or F2(Y ) ≥ 1− ty) ≈ tℓ(x , y)

P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) ≈ t(x + y − ℓ(x , y))
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Asymptotic Independence

▶ Example 1: If X ,Y are independent,

ℓ(x , y) := lim
t→0

1

t
(tx + ty − t2xy) = x + y

▶ Example 2: If X ,Y are Gaussian with |ρ| < 1, can be shown that

ℓ(x , y) = x + y
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Asymptotic Independence

▶ Those distributions with ℓ(x , y) = x + y are called asymptotically

independent

▶ Asymptotic independence is equivalent to

lim
t→0

1

t
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) = x + y − ℓ(x , y) = 0

▶ In particular, if x = y = 1, it means

lim
t→0

P (F1(X ) ≥ 1− t|F2(Y ) ≥ 1− t) = 0

▶ That is, extremes do not occur simultaneously
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Asymptotic Independence: Illustration
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Alternative Characterization of Tail Dependence

▶ The possibility of AI implies two issues with the use of ℓ to identify

tail dependence structure:

1. Very different distributions become indistinguishable

2. For joint exceedances, ℓ gives the approximation

P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) ≈ 0

▶ Instead, what if we directly model the probability of joint threshold

exceedance?
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Alternative Characterization of Tail Dependence

▶ Assume the existence of a scaling function q such that

c(x , y) := lim
t→0

1

q(t)
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty)

exists and is non-trivial

▶ Under AI, q(t) = o(t). Under asymptotic dependence,

lim q(t)/t ∈ (0, 1]

▶ Essentially, q describes the strength of tail dependence and c

describes the shape of the joint tail, but they are not completely

unrelated

▶ Under AD, c and ℓ are almost equivalent since

ℓ(x , y) = x + y − (2− ℓ(1, 1))c(x , y)

▶ Under AI however, c contains much information on dependence

structure
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Examples

▶ If X ,Y are independent, then c(x , y) = xy

▶ If X ,Y are Gaussian with correlation ρ ∈ (−1, 1), then

c(x , y) = (xy)1/(1+ρ)

▶ Notice that c is homogeneous: for r > 0, c(rx , ry) = rαc(x , y), for

some α ≥ 1

▶ This is always true, and α relates to strength of dependence

▶ α = 1 ⇒ AD or almost AD

▶ α ∈ (1, 2) ⇒ AI, positive pre-asymptotic dependence

▶ α = 2 ⇒ AI, perfect or near-perfect independence

▶ α > 2 ⇒ AI, negative association between extremes (rare)
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An Example that Connects AI and AD

▶ Let R ∼ Pareto (λ), λ ∈ (0, 2], Wj ∼ Pareto (1), i = 1, 2, and

R,W1,W2 are independent. Then (X ,Y ) = R(W1,W2) satisfies our

expansion

▶ Function cλ(x , y) is ugly, but take-home message is

▶ λ < 1 ⇒ AD

▶ λ ≥ 1 ⇒ AI

▶ Motivates inference for tail dependence that is based on c
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Nonparametric Estimation of c

▶ Let (X1,Y1), ..., (Xn,Yn) be independent copies of (X ,Y )

▶ The definition of c suggests the “estimator”

ĉn(x , y) :=
1

q(k/n)

1

n

n∑
i=1

1

{
F̂1(Xi ) ≥ 1− k

n
x , F̂2(Yi ) ≥ 1− k

n
y

}
,

where F̂j are the empirical CDF’s

▶ This is a rank-based estimator (can be rewritten as a function of

ranks)

▶ It appears in [Draisma et al., 2004], but just as a tool in their

proofs. Never used directly for inference before
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The Most Difficult Theorem I Ever Proved

▶ Assume that as t → 0,

1

q(t)
P (F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) = c(x , y) +O

(
1

log(1/t)

)
locally uniformly over (x , y) ∈ [0,∞)2

▶ For an suitably chosen intermediate sequence k = kn, define

m = mn := nq(k/n)

Theorem (L, Engelke and Volgushev (2020))

There exist Gaussian processes W (1) and W (2) on [0,∞)2 such that

1 Under AI,
√
m (ĉn − c)⇝W (1) (in ℓ∞

(
[0,T ]2

)
).

2 Under AD,
√
m (ĉn − c)⇝W (2) (in the topo. of hypi-convergence

for locally bounded functions ([Bücher et al., 2014])).
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Important Remarks

▶ Weak assumptions (no smoothness on c , very slow bias rate allowed)

▶ Basically,

√
m (ĉn(x , y)− c(x , y)) = Something︸ ︷︷ ︸

⇝W (1)

+
√
m (c(x̂n, ŷn)− c(x , y)) ,

where x̂n and ŷn are based on the empirical quantiles of X and of Y

▶ “Something” is what one would obtain with known marginal

distributions F1,F2. It is a fairly standard empirical process

▶ The other term comes from the error in estimating the marginals

▶ Under AD, it converges to a non trivial limit

▶ Under AI, it disappears because convergence of x̂n and ŷn is faster

than convergence of “Something” to W (1) (based on more data)
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Why a Parametric Estimator?

▶ Parametric models often allow for a nice interpretation

▶ The non-parametric estimator ĉn is not a proper function c

▶ More importantly, recall that ĉn depends on the unknown scaling

function q (through m = nq(k/n))

▶ The following parametric estimation procedure fixes this problem
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The M-Estimator We Need

▶ Assume parametric family {cθ : θ ∈ Θ ⊂ Rp}
▶ Idea: Choose θ as to minimize∥∥∥∥∥

∫
[0,T ]2

g(x , y)cθ(x , y) dx dy −
∫
[0,T ]2

g(x , y)ĉn(x , y) dx dy

∥∥∥∥∥ ,
where g : [0,T ]2 → Rq is a vector of arbitrary weight functions

▶ Problem: ĉn can only be calculated up to the unknown scaling m

▶ Solution: Since

mĉn(x , y) =
n∑

i=1

1

{
F̂1(Xi ) ≥ 1− k

n
x , F̂2(Yi ) ≥ 1− k

n
y

}

can be calculated, simply multiply the second integral by m

▶ To adjust, multiply left integral by a new unknown parameter
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The M-Estimator We Deserve

▶ We obtain the following objective function:

Ψn(θ, σ) :=∥∥∥∥∥σ
∫
[0,T ]2

g(x , y)cθ(x , y) dx dy −m

∫
[0,T ]2

g(x , y)ĉn(x , y) dx dy

∥∥∥∥∥
▶ By minimizing this objective function, we hope that cθ will estimate

c and σ will estimate m
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A Much Easier Theorem

▶ Suppose that the true function generating the data is cθ0 , θ0 ∈ Θ,

and that the map

(θ, σ) 7→ σ

∫
[0,T ]2

g(x , y)cθ(x , y) dx dy

is cool enough

▶ Assume the setting of the previous theorem

Theorem (L, Engelke and Volgushev (2020))

If (θ̂n, σ̂n) = argminθ,σΨn(θ, σ),

√
m

((
θ̂n,

σ̂n

m

)
− (θ0, 1)

)
⇝ N (0,Σ(θ0)) .
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Summary

▶ We use a higher order representation of the tail dependence that

naturally encompasses AD and AI

▶ It generalizes ℓ in some sort

▶ We obtain asymptotically normal estimators of the shape of tail

dependence (represented by c)

Thank you! Questions?
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Spatial Tail Dependence

▶ We are interested in the extremal behavior of a process

Y = {Y (u) : u ∈ T }
▶ Usually, extremal dependence of Y is characterized by all the

functions

ℓ(u1,...,ud )(x) := lim
t→0

1

t
P

 ⋃
1≤j≤d

{
F (uj )(Y (uj)) > 1− txj

} ,

d ∈ N, uj ∈ T , x ∈ [0,∞)d

▶ Same problem as before: If for two locations u1, u2, Y (u1) and

Y (u2) are AI, then ℓ(u1,u2) is trivial
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A Partial Solution

▶ Can characterize the extremal dependence of Y by functions

c(u1,u2)(x , y) := lim
t→0

1

q(u1,u2)(t)
P
(
F (uj )(Y (uj)) > 1− txj , j = 1, 2

)
,

uj ∈ T
▶ Advantage: contains more information on the pairwise dependencies

under AI

▶ Disadvantage: only contains information on pairs. Luckily, currently

used tail models are completely characterize by pairwise structure
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Estimation of Functions c (u1,u2)

▶ Find a parametric model
{{

c
(ui ,uj )
θ : 1 ≤ i , j ≤ d

}
: θ ∈ Θ

}
▶ Given observations of Y at locations u1, . . . , ud , estimate each

c(ui ,uj ) using only the bivariate data from locations ui , uj

▶ Combine all nonparametric estimators ĉ
(ui ,uj )
n to estimate θ by

minimizing some global distance, e.g.

θ̂ = argmin
θ

∑
1≤i,j≤d

∥∥∥f (ĉ(ui ,uj )n

)
− f

(
c
(ui ,uj )
θ

)∥∥∥2 ,
for some vector-valued functional
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