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Random Walk Metropolis algorithm

MCMC in a nutshell

Probability measure I

Want to estimate (finite) expectation [ hdll

Idea: create a Markov chain Xi, X5, ... that has target distribution I
If the chain is well behaved (irreducible, aperiodic, Harris recurrent),

%Zh(X,-)—>/hdI‘l as.
i=1

In general, less efficient than iid sampling, but iid sampling is
sometimes unrealizable
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The Random Walk Metropolis algorithm

RWM is a very simple MCMC algorithm

7 is a (possibly unnormalized) density on RY

Initialize Xg

Given X, independently generate Y symmetric around 0

Set
Xe4+Y, wp. a;
Xt+1 =
Xta w.p. 1-— it

. w(Xe+Y
Q: = min {1, w}

Called accept/reject step
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The Random Walk Metropolis algorithm

e Under mild conditions on instrumental distribution (distribution of
increments Y),

a.S.

1< J h(x)m(x) dx
n Z h(Xe) — [ m(x) dx

e Usually Y ~ Ny (0,02%/y)

@ In theory, works for any o > 0...

@ But small ¢ = Small steps = Slow exploration

o And large 0 = X; + Y far from the mode = % small = Most
steps are rejected = Slow exploration

@ Must choose o carefully
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Optimal scaling

o [Roberts et al., 1997] proposed optimal scaling (in simplified
framework)

Assume 7(x) = [I, f(x)
Let 0 = % (Large dimension = Small steps)

Let X(?)(t) be Markov chain obtained (with step size depending on
dimension d)

And Xj(d)(t) its j-th component
Smaller steps = More steps needed, so accelerate chain:

Z(t) = x\V(|dt))

Let d —»
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Accelerating the Markov chain
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Figure: Trace of the accelerated first component of the Markov chain, Zl(d), for
different values of d. The target distribution is multivariate standard Gaussian.
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Random Walk Metropolis algorithm

Optimal scaling

o Find that ZJ-(d) converges (weakly in Skorokhod topology) to
Langevin diffusion with speed measure v({) = 20?°® (—@) and
stationnary distribution f

B is unknown parameter of f

Find a value 7 that maximizes v(¢)

7 is the only value that makes the asymptotic acceptance probability
0.234 (regardless of B)!

@ So just simulate a few short runs and tune o so that acceptance rate
is roughly 0.234
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The problem with bimodal distributions

Suppose the target density 7 (on R9) has two distinct modes with a
"hole" in between (low density region)

Optimal scaling strategy tends to favor local exploration (Relatively
small o)

Small steps = Almost impossible to cross the hole in 1 step

Almost impossible to accept steps into the hole (% very small)

@ Chain gets stuck in a mode and never explores the other one
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Solution: A new instrumental distribution

e Previously, Y ~ Ny (0,0214)
o Now, let

Ny (0,021 p. 1-
Yw{d(,a 4), w.p P
D, wp. p
where D is any distribution on RY symmetric around 0, p € (0,1)
@ In practice, choose D to favor switching modes

@ Turns the "slowly mixing" chain into a "rapidly mixing" chain
([Guan and Krone, 2007])
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Framework

Assume 7(x) = f1(x1) H:-jzz f(xi)

e Instrumental distribution D: Y; ~ Dy, Y, ..., Yq ~ N (0,02), all
independent
@ Scale both o = % and p=1A g, but not Dy

Accelerate the chain by a factor of d (like before)

. . d
@ The one-dimensional accelerated processes Zj( ) weakly converge
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The Langevin diffusion with Metropolis jumps

@ Z; and Z;p are Langevin diffusions with speed measure v(¢) and

stationnary distributions f and f;
@ At random times Ty, T», ... generated by a Poisson process of rate
B, generate Y(T;) )

e At time T;, Z p jumps by Y(T;) with probability
a(l, Zim(T; ). Zum(T;) + Y(Th)

]
f 2 f '2
oy o A =58 A, (it - 56
V)= /B fi(x) B
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The limiting processes

If the chain starts at stationnarity (X(9)(0) ~ 1), then as d — oo,

Zl(d) = Zim, andforj>2, Zj(d) = 7.

Here, = represents weak convergence in the Skorokhod topology.
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Optimizing the limiting processes

@ Run classic RWM on 7 and tune o so that acceptance rate is
roughly 0.234

@ Run RWM on f; with instrumental distribution D; and acceptance
probability « (¢, x, y) to estimate acceptance probability of large
steps, say A

@ Choose p, proportion of accepted large steps will be ~ pA

@ Number of times we switch modes = np\
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e Can work for much more general target distributions (align modes
with rotation)

o Find objective way to choose p through non-asymptotics

o Can replace the large step distribution D by any algorithm
("something-inside-Metropolis")
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