Weak Convergence of a Metropolis Algorithm for Bimodal Target Distributions

Michaël Lalancette¹ Mylène Bédard²

¹Department of Statistical Sciences, University of Toronto, lalancette@utstat.toronto.edu

²Département de Mathématiques et de Statistique, Université de Montréal, bedard@dms.umontreal.ca

June 4, 2018

1 Random Walk Metropolis algorithm

- 2 Weak convergence of our algorithm
- Summary and Future work

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

1 Random Walk Metropolis algorithm

- The Random Walk Metropolis algorithm
- Optimal scaling
- The problem with bimodal distributions
- Solution: A new instrumental distribution

2 Weak convergence of our algorithm

Summary and Future work

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

MCMC in a nutshell

- Probability measure Π
- Want to estimate (finite) expectation $\int h \, d\Pi$
- Idea: create a Markov chain $X_1, X_2, ...$ that has target distribution Π
- If the chain is well behaved (irreducible, aperiodic, Harris recurrent),

$$\frac{1}{n}\sum_{i=1}^n h(X_i) \longrightarrow \int h\,d\Pi \quad \text{a.s.}$$

 In general, less efficient than iid sampling, but iid sampling is sometimes unrealizable

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

The Random Walk Metropolis algorithm

- RWM is a very simple MCMC algorithm
- π is a (possibly unnormalized) density on \mathbb{R}^d
- Initialize X₀
- Given X_t, independently generate Y symmetric around 0
- Set

$$\mathbf{X}_{t+1} = \begin{cases} \mathbf{X}_t + \mathbf{Y}, & \text{w.p.} \quad \alpha_t \\ \mathbf{X}_t, & \text{w.p.} \quad 1 - \alpha_t \end{cases}$$

- $\alpha_t = \min\left\{1, \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)}\right\}$
- Called accept/reject step

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

The Random Walk Metropolis algorithm

Under mild conditions on instrumental distribution (distribution of increments Y),

$$\frac{1}{n}\sum_{t=1}^{n}h(\mathsf{X}_{t})\longrightarrow \frac{\int h(\mathsf{x})\pi(\mathsf{x})\,d\mathsf{x}}{\int \pi(\mathsf{x})\,d\mathsf{x}} \quad \text{a.s.}$$

- Usually $\mathbf{Y} \sim \mathbf{N}_d \left(\mathbf{0}, \sigma^2 \mathbf{I}_d \right)$
- In theory, works for any $\sigma > 0...$
- But small $\sigma \Rightarrow$ Small steps \Rightarrow Slow exploration
- And large $\sigma \Rightarrow X_t + Y$ far from the mode $\Rightarrow \frac{\pi(X_t+Y)}{\pi(X_t)}$ small \Rightarrow Most steps are rejected \Rightarrow Slow exploration
- Must choose σ carefully

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

Optimal scaling

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let $\sigma = \frac{\ell}{\sqrt{d}}$ (Large dimension \Rightarrow Small steps)
- Let X^(d)(t) be Markov chain obtained (with step size depending on dimension d)
- And X_j^(d)(t) its j-th component
- Smaller steps \Rightarrow More steps needed, so accelerate chain: $Z_j^{(d)}(t) = X_j^{(d)}(\lfloor dt \rfloor)$
- Let $d \to \infty$

Random Walk Metropolis algorithm

Weak convergence of our algorithm Summary and Future work The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

Accelerating the Markov chain

Figure: Trace of the accelerated first component of the Markov chain, $Z_1^{(d)}$, for different values of d. The target distribution is multivariate standard Gaussian.

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

Optimal scaling

- Find that $Z_j^{(d)}$ converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure $v(\ell) = 2\ell^2 \Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$ and stationnary distribution f
- B is unknown parameter of f
- Find a value $\hat{\ell}$ that maximizes $v(\ell)$
- $\hat{\ell}$ is the only value that makes the asymptotic acceptance probability 0.234 (regardless of *B*)!
- So just simulate a few short runs and tune σ so that acceptance rate is roughly 0.234

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

The problem with bimodal distributions

- Suppose the target density π (on \mathbb{R}^d) has two distinct modes with a "hole" in between (low density region)
- Optimal scaling strategy tends to favor local exploration (Relatively small σ)
- $\bullet\,$ Small steps $\Rightarrow\,$ Almost impossible to cross the hole in 1 step
- Almost impossible to accept steps into the hole $\left(\frac{\pi(X_t+Y)}{\pi(X_t)}\right)$ very small)
- Chain gets stuck in a mode and never explores the other one

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

,

Solution: A new instrumental distribution

- Previously, Y \sim N_d $\left(0, \sigma^2 I_d\right)$
- Now, let

$$\mathsf{Y} \sim egin{cases} \mathsf{N}_d\left(0,\sigma^2 \mathit{I}_d
ight), & ext{w.p.} & 1-p \ \mathcal{D}, & ext{w.p.} & p \end{cases}$$

where \mathcal{D} is any distribution on \mathbb{R}^d symmetric around 0, $p \in (0,1)$

- ullet In practice, choose $\mathcal D$ to favor switching modes
- Turns the "slowly mixing" chain into a "rapidly mixing" chain ([Guan and Krone, 2007])

Random Walk Metropolis algorithm

2 Weak convergence of our algorithm

- Framework
- The limiting processes

Framework

- Assume $\pi(x) = f_1(x_1) \prod_{i=2}^d f(x_i)$
- Instrumental distribution \mathcal{D} : $Y_1 \sim \mathcal{D}_1$, Y_2 , ..., $Y_d \sim N(0, \sigma^2)$, all independent
- Scale both $\sigma=rac{\ell}{\sqrt{d}}$ and $p=1\wedgerac{eta}{d},$ but not \mathcal{D}_1
- Accelerate the chain by a factor of *d* (like before)
- The one-dimensional accelerated processes $Z_i^{(d)}$ weakly converge

The Langevin diffusion with Metropolis jumps

- Z_L and Z_{LM} are Langevin diffusions with speed measure $v(\ell)$ and stationnary distributions f and f_1
- At random times $T_1, T_2, ...$ generated by a Poisson process of rate β , generate $Y(T_i) \stackrel{iid}{\sim} \mathcal{D}_1$
- At time T_i , Z_{LM} jumps by $Y(T_i)$ with probability $\alpha(\ell, Z_{LM}(T_i^-), Z_{LM}(T_i^-) + Y(T_i))$

$$\alpha(\ell, x, y) = \Phi\left(\frac{\log\frac{f_1(y)}{f_1(x)} - \frac{\ell^2}{2}B}{\ell\sqrt{B}}\right) + \frac{f_1(y)}{f_1(x)}\Phi\left(\frac{-\log\frac{f_1(y)}{f_1(x)} - \frac{\ell^2}{2}B}{\ell\sqrt{B}}\right)$$

۲

Framework The limiting processes

The limiting processes

Theorem

If the chain starts at stationnarity $(X^{(d)}(0) \sim \pi)$, then as $d \to \infty$,

$$Z_1^{(d)} \Rightarrow Z_{LM}, \quad \text{and for } j \ge 2, \quad Z_i^{(d)} \Rightarrow Z_L.$$

Here, \Rightarrow represents weak convergence in the Skorokhod topology.

Framework The limiting processes

Optimizing the limiting processes

- Run classic RWM on π and tune σ so that acceptance rate is roughly 0.234
- Run RWM on f_1 with instrumental distribution \mathcal{D}_1 and acceptance probability $\alpha(\ell, x, y)$ to estimate acceptance probability of large steps, say λ
- Choose p, proportion of accepted large steps will be $pprox p\lambda$
- Number of times we switch modes $\approx np\lambda$

1 Random Walk Metropolis algorithm

2 Weak convergence of our algorithm

- Can work for much more general target distributions (align modes with rotation)
- Find objective way to choose *p* through non-asymptotics
- Can replace the large step distribution \mathcal{D} by any *algorithm* ("something-inside-Metropolis")

algorithms. Ann. Appl. Probab., 7:110-120.