Rank-based M-Estimation for Tail Dependence and Independence

Department of Statistical Sciences, University of Toronto¹ Research Center for Statistics, University of Geneva²

Objective

Using an iid sample $(X_1, Y_1), ..., (X_n, Y_n) \sim (X, Y)$, estimate the joint tail probability

$$\mathbb{P}\left(X \ge q_1, Y \ge q_2\right)$$

where

- X, Y are possibly dependent
- q_1, q_2 are large thresholds

Univariate Extreme Value Theory (see [1])

- With an iid sample $X_1, ..., X_n \sim F$, we cannot use sample quantiles to estimate $\overline{F}(q) := 1 - F(q)$ if $q > X_{(n)}$ (the estimate would be 0)
- Instead, assume F belongs to a max-domain of attraction (most common continuous distributions do)

• Then as
$$u \to F^{-1}(1)$$
,

$$\frac{\bar{F}(u+x)}{\bar{F}(u)} \longrightarrow (1+\gamma x/\sigma)^{-1/\gamma}, \quad \sigma > 0, \gamma \in \mathbb{R}$$

• Choose *u* high enough so that $\mathbf{1} u$ is close enough to the tail of F2 There is enough data above u to estimate the parameters σ, γ

- Usually, u is the (1 k/n)-th sample quantile, where $k = k_n$ is an intermediate sequence $(k \to \infty, k/n \to 0)$
- Then use estimator

$$\bar{F}(u+x) \approx \hat{\bar{F}}(u)(1+\hat{\gamma}x/\hat{\sigma})^{-1/\hat{\gamma}},$$

where $\hat{\sigma}$ and $\hat{\gamma}$ are, e.g., MLE's

Figure 1: Estimation of the tail of a sample of size 1000 from the t_{10} distribution, using MLE's of σ and γ and the 95-th sample percentile as threshold u.

Michaël Lalancette¹ Stanislav Volgushev¹ Sebastian Engelke²

General Strategy

- Multivariate EVT is much harder since there is no unique parametric model for the *joint* tail
- Can estimate the probability that X and Ysimultaneously exceed their respective high (unknown) quantiles...
- ... and use univariate methods to estimate these quantiles

Our Assumption

• Uniformly over (x, y) such that $x^2 + x^2$ $\mathbb{P}\left(F_1(X) \ge 1 - tx, F_2(Y) \ge 1 - ty\right)$

for some $\alpha > 0$

- This is a classic assumption in multivariate EVT ([2, 3])
- The survival tail copula function c describes the shape of the joint tail, whereas q characterizes the strength of tail dependence
- Compared to existing methods, we make no smoothness assumptions on c (e.g. differentiability, cf [2]) • Simple cases:
- Perfect independence: $q(t) = t^2$, c(x, y) = xy• Perfect (positive) dependence: $q(t) = t, c(x, y) = x \land y$
- If q(t) = o(t), X and Y are said to be asymptotically independent, otherwise asymptotically dependent

Nonparametric Method

• Choose intermediate sequence k and "estimate" c by $\hat{c}_n(x,y) = \frac{n^{-1} \sum_{i=1}^n \mathbb{1} \{ R_X(X_i) \ge n+1 - kx, R_Y(Y_i) \ge n+1 - ky \}}{q(k/n)}$

Theorem 1

- If $nq(k/n) \to \infty$ and $nq(k/n)(k/n)^{2\alpha} \to 0$, $\sqrt{nq(k/n)}(\hat{c}_n c)$ converges weakly to a Gaussian process W
- functions, under asymptotic dependence (see [4]).
- in $\ell^{\infty}_{\text{Loc}}([0,\infty)^2)$, under asymptotic independence. • in the topology of hypi convergence for locally bounded

$$y^{2} = 1,$$

$$y' = c(x, y) + O(t^{\alpha}), \quad t \downarrow 0,$$

- survival tail copula function
- functions that contains the true function c_{θ_0}
- Would like to estimate θ_0 by minimizing

Instead, minimize

$$\|\sigma \int \phi d\theta = 0 \quad \text{over all } (\theta, \sigma) \in \Theta \times (\theta)$$
free!

- [1] L. de Haan and A. Ferreira. Extreme Value Theory. Springer, 2006.
- [2] G. Draisma, H. Drees, A. Ferreira, and L. de Haan. Bernoulli, 10:251–280, 2004.
- [3] J.H.J. Einmahl, A. Krajina, and J. Segers. Ann. Stat., 40:1764–1793, 2012.
- [4] A. Bücher, J. Segers, and S. Volgushev. Functions and Residuals via Epi- and Hypographs. Ann. Stat., 42:1598–1634, 2014.

Parametric Method

• Why? In general, the estimated function \hat{c}_n is not an admissible • Assume we have a family $\{c_{\theta}\}, \theta \in \Theta \subseteq \mathbb{R}^p$, of admissible $\left\|\int gc_{\theta} - \int g\hat{c}_{n}\right\|$ for some integrable, \mathbb{R}^q -valued (q > p) weight function g $\int gc_{\theta} - \int g \times nq(k/n)\hat{c}_n \|,$ $(0,\infty)$, and get estimator $\hat{\sigma}_n$ of nq(k/n) for

Theorem 2

conditions on

nditions on

ky/n)

References

Bivariate Tail Estimation: Dependence in Asymptotic Independence. An M-Estimator for Tail Dependence in Arbitrary Dimensions. When Uniform Weak Convergence Fails: Empirical Processes for Dependence