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Objective

Using an iid sample (X1, Y1), ..., (Xn, Yn) ∼ (X, Y ), estimate the
joint tail probability

P (X ≥ q1, Y ≥ q2)
where
•X, Y are possibly dependent
• q1, q2 are large thresholds

Univariate Extreme Value Theory (see [1])

•With an iid sample X1, ..., Xn ∼ F , we cannot use sample
quantiles to estimate F̄ (q) := 1− F (q) if q > X(n) (the estimate
would be 0)

• Instead, assume F belongs to a max-domain of attraction (most
common continuous distributions do)

•Then as u→ F−1(1),
F̄ (u + x)
F̄ (u)

−→ (1 + γx/σ)−1/γ, σ > 0, γ ∈ R

•Choose u high enough so that
1 u is close enough to the tail of F
2 There is enough data above u to estimate the parameters σ, γ

•Usually, u is the (1− k/n)–th sample quantile, where k = kn is an
intermediate sequence (k →∞, k/n→ 0)

•Then use estimator
F̄ (u + x) ≈ ˆ̄F (u)(1 + γ̂x/σ̂)−1/γ̂,

where σ̂ and γ̂ are, e.g., MLE’s

Figure 1: Estimation of the tail of a sample of size 1000 from the t10 distribution,
using MLE’s of σ and γ and the 95–th sample percentile as threshold u.

General Strategy

•Multivariate EVT is much harder since there is no unique
parametric model for the joint tail

• Can estimate the probability that X and Y
simultaneously exceed their respective high
(unknown) quantiles...

• ... and use univariate methods to estimate these quantiles

Our Assumption

•Uniformly over (x, y) such that x2 + y2 = 1,
P (F1(X) ≥ 1− tx, F2(Y ) ≥ 1− ty)

q(t)
= c(x, y) + O(tα), t ↓ 0,

for some α > 0
•This is a classic assumption in multivariate EVT ([2, 3])
•The survival tail copula function c describes the shape of the
joint tail, whereas q characterizes the strength of tail dependence

•Compared to existing methods, we make no smoothness
assumptions on c (e.g. differentiability, cf [2])

•Simple cases:
• Perfect independence: q(t) = t2, c(x, y) = xy
• Perfect (positive) dependence: q(t) = t, c(x, y) = x ∧ y

• If q(t) = o(t), X and Y are said to be asymptotically
independent, otherwise asymptotically dependent

Nonparametric Method

•Choose intermediate sequence k and “estimate” c by

ĉn(x, y) = n−1 ∑n
i=1 1 {RX(Xi) ≥ n + 1− kx,RY (Yi) ≥ n + 1− ky}

q(k/n)

Theorem 1

If nq(k/n) → ∞ and nq(k/n)(k/n)2α → 0,
√
nq(k/n)(ĉn − c)

converges weakly to a Gaussian process W
• in `∞Loc([0,∞)2), under asymptotic independence.
• in the topology of hypi convergence for locally bounded
functions, under asymptotic dependence (see [4]).

Parametric Method

•Why? In general, the estimated function ĉn is not an admissible
survival tail copula function

•Assume we have a family {cθ}, θ ∈ Θ ⊆ Rp, of admissible
functions that contains the true function cθ0

•Would like to estimate θ0 by minimizing∥∥∥∥∫ gcθ − ∫
gĉn

∥∥∥∥
for some integrable, Rq–valued (q > p) weight function g

• Instead, minimize ∥∥∥∥σ ∫ gcθ − ∫
g × nq(k/n)ĉn

∥∥∥∥ ,
over all (θ, σ) ∈ Θ× (0,∞), and get estimator σ̂n of nq(k/n) for
free!

Theorem 2

1 Under assumptions of Theorem 1 and smoothness conditions on
the map θ 7→ ∫

gcθ,√
nq(k/n)

θ̂n, σ̂n
nq(k/n)

− (θ0, 1)


is asymptotically normal.
2 For (x, y) ∈ (0,∞)2, under further smoothness conditions on
the map θ 7→ cθ(x, y),√

nq(k/n)
 σ̂ncθ̂n(x, y)/n
P (F1(X) ≥ 1− kx/n, F2(Y ) ≥ 1− ky/n)

− 1


is asymptotically normal.
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