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This Supplementary Material to Lalancette, Engelke and Volgushev
(2020+) is divided in six sections. Section S1 contains the proofs of all main
results, with a number of necessary technical results deferred to Section S2.
Sections S3 and S4 present proofs of several claims from different Examples.
A brief discussion of computational complexity in spatial estimation is given
in Section S5 and additional simulation results appear in Section S6. All ref-
erences to sections, results and equations that do not start with the letter “S"
are pointing to the aforementioned main paper.

S1. Proofs of main results. In this section are collected the proofs of Theorems 1 to 5.
A number of more technical results, which are instrumental in the following, are collected in
Section S2.

S1.1. Bivariate estimation. For the proofs concerning the bivariate estimators, we as-
sume the framework of Sections 3.1 and 3.2, we define the transformed random variables
U = 1− F1(X), V = 1− F2(Y ) and note that Q is the distribution function of the random
vector (U,V ). Define the transformed observations Ui = 1− F1(Xi), Vi = 1− F2(Yi) and
denote by Un,1, . . . ,Un,n and Vn,1, . . . , Vn,n the ordered versions thereof. Additionally define
Un,0 = Vn,0 = 0. For an intermediate sequence k, define the random functions un and vn by

un(x) =
n

k
Un,bkxc and vn(y) =

n

k
Vn,bkyc,

for (x, y) ∈ [0, T ]2. Recalling that m= nq(k/n), it allows us to write

ĉn(x, y) =
n

m
Qn

(
k

n
un(x),

k

n
vn(y)

)
where

Qn(x, y) :=
1

n

n∑
i=1

1{Ui ≤ x,Vi ≤ y}

denotes the empirical distribution function of (U1, V1), . . . , (Un, Vn). We begin by discussing
technical results that will be used in the proof of both Theorem 1 and Theorem 2. Consider
the decomposition

Wn(x, y) =
√
m
( n
m
Qn

(k
n
un(x),

k

n
vn(y)

)
− n

m
Q
(k
n
un(x),

k

n
vn(y)

))
+
√
m
( n
m
Q
(k
n
un(x),

k

n
vn(y)

)
− c(un(x), vn(y))

)
+
√
m
(
c(un(x), vn(y))− c(x, y)

)
.
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For the second term in the above decomposition, note that

√
m
( n
m
Q
(k
n
x,
k

n
y
)
− c(x, y)

)
=O

(√
mq1

(
k

n

))
= o(1)

uniformly over all (x, y) ∈ [0,2T ]2; here the last equation follows from Condition 1(ii). By
Corollary S1 we have P(un(T )∨ vn(T )≤ 2T )→ 1, and thus

sup
x,y∈[0,T ]

√
m
∣∣∣ n
m
Q
(k
n
un(x),

k

n
vn(y)

)
− c(un(x), vn(y))

∣∣∣= oP (1).

Next define for all x, y ∈ [0,2T ]

(S1.1) Hn(x, y) :=
√
m
( n
m
Qn

(k
n
x,
k

n
y
)
− n

m
Q
(k
n
x,
k

n
y
))
.

By Lemma S4 this process converges, in `∞([0,2T ]2), to the process W from Theorem 1
and by Corollary S1 un and vn converge uniformly in probability to the identity function
I : [0,2T ]→ [0,2T ]. Therefore, the triple (Hn, un, vn) converges jointly in distribution to
(W,I, I). This implies

(S1.2) sup
x,y∈[0,T ]

∣∣∣Hn(un(x), vn(y))−Hn(x, y)
∣∣∣= oP (1).

Indeed, consider the map

f :

{
`∞([0,2T ]2)×V[0, T ]×V[0, T ]→R

(a, b1, b2) 7→ supx,y∈[0,T ] |a(b1(x), b2(y))− a(x, y)|

where V[0, T ] := {g ∈ `∞[0, T ] : g([0, T ]) ⊂ [0,2T ]} and assume that the product space is
equipped with the norm ‖a‖∞ + ‖b1‖∞ + ‖b2‖∞. Observe that f is continuous at points
(a, b1, b2) where a is a continuous function and that the sample paths of W are almost surely
continuous. Thus, by the continuous mapping theorem, with probability converging to 1,

sup
x,y∈[0,T ]

∣∣∣Hn(un(x), vn(y))−Hn(x, y)
∣∣∣= f(Hn, un, vn) f(W,I, I) = 0.

Since the limit is constant a.s. Equation (S1.2) follows. Combining the equations above, we
find

(S1.3) Wn(x, y) =Hn(x, y) +
√
m
(
c(un(x), vn(y))− c(x, y)

)
+ oP (1),

where the term oP (1) is uniform on [0, T ]2, and we recall that Hn W in `∞([0,2T ]2).

S1.1.1. Proof of Theorem 1. Define

Sn(x, y) :=
√
m
(
c(un(x), vn(y)) + c(x, y)

)
.

In light of Equation (S1.3) it suffices to prove that Sn
P→ 0 uniformly on [0, T ]2. From here

on it is more convenient to study component-wise increments. That is, we write

Sn(x, y) =
√
m(c(un(x), y)− c(x, y)) +

√
m(c(un(x), vn(y))− c(un(x), y))

=: S(a)
n (x, y) + S(b)

n (x, y)

and we will show that both S(a)
n and S(b)

n converge to 0 in probability, starting with S(a)
n .
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By assumption, since with probability converging to 1 we have un(x) ∈ [0,2T ] for every
x≤ T , we can write

S(a)
n (x, y) =

√
m (c(un(x), y) + c(x, y))(S1.4)

=
√
m

{
n

m
Q

(
k

n
un(x),

k

n
y

)
− n

m
Q

(
k

n
x,
k

n
y

)
+OP

(
q1

(
k

n

))}
=

n√
m

(
Q

(
k

n
un(x),

k

n
y

)
−Q

(
k

n
x,
k

n
y

))
+ oP (1)(S1.5)

uniformly on [0, T ]2, since the sequence m was chosen so that
√
mq1(k/n)→ 0. We will use

both Equations (S1.4) and (S1.5) as representations of S(a)
n throughout the proof.

Let βn = (m/k)/(log(k/m)). From there, partition [0, T ]2 in Θ
(1)
n = [0,1/k) × [0, T ],

Θ
(2)
n = [1/k,βn)× [0, T ] and Θ

(3)
n = [βn, T ]× [0, T ] (if βn < 1/k, Θ

(2)
n is empty). These sets

represent the “small", “intermediate" and “large" values of x, respectively. We will prove that
the suprema of S(a)

n on Θ
(1)
n , Θ

(2)
n and Θ

(3)
n all converge to 0 in probability. Equation (S1.5)

yields

sup
(x,y)∈Θ

(1)
n

|S(a)
n (x, y)|= n√

m
sup

0≤x<1/k

∣∣∣∣Q(knun(x),
k

n
y

)
−Q

(
k

n
x,
k

n
y

)∣∣∣∣+ oP (1)

=
n√
m

sup
0≤x<1/k

Q

(
k

n
x,
k

n
y

)
+ oP (1)

≤ n√
m

1

n
+ oP (1)

=
1√
m

+ oP (1),

where we have once again used the facts that un(x) = 0 whenever x < 1/k and thatQ(0, ·) =

Q(·,0) = 0, in addition to the fact that Q(u, v) ≤ u. This proves that supΘ
(1)
n
|S(a)
n | → 0 in

probability.
Using Equation (S1.5) again, the supremum of S(a)

n on Θ
(2)
n can be expressed as

sup
1/k≤x<βn

∣∣∣S(a)
n (x, y)

∣∣∣= sup
1/k≤x<βn

n√
m

∣∣∣∣Q(knun(x),
k

n
y

)
−Q

(
k

n
x,
k

n
y

)∣∣∣∣+ oP (1)

≤ sup
1/k≤x<βn

n√
m

∣∣∣∣knun(x)− k

n
x

∣∣∣∣+ oP (1)

= sup
1/k≤x<βn

k√
m
|un(x)− x|+ oP (1)

=OP

(
sup

1/k≤x<βn

√
k

m
ϕ(x)

)
+ oP (1) ,

where we have used Lipschitz continuity of Q and Lemma S3. The last bound holds for
any function ϕ that satisfies the conditions in Lemma S3, but from now on we use ϕ(x) :=√
x log log(1/x) on (0,B] and ϕ(x) :=

√
x on (B,T ], where B > 0 is chosen small enough

so that ϕ is well defined and non-decreasing. By monotonicity, the supremum is attained at
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x= βn. We then have

sup
1/k≤x<βn

∣∣∣S(a)
n (x, y)

∣∣∣=OP

(√
k

m
βn log log(1/βn)

)
+ oP (1)

because since βn→ 0, eventually βn ≤ B, so eventually ϕ(βn) =
√
βn log log(1/βn). The

last display converges in probability to 0 since

k

m
βn log log(1/βn) =

log log
(
k
m log(k/m)

)
log(k/m)

−→ 0

as k/m→∞, which proves that supΘ
(2)
n
|S(a)
n | → 0 in probability.

Finally, when considering large values of x, Lemma S3 and a combination of Lemmas S7
and S8 imply that

sup
βn≤x≤T

∣∣∣S(a)
n (x, y)

∣∣∣= sup
βn≤x≤T

√
m|c(un(x), y)− c(x, y)|

.
√
m sup

βn≤x≤T
|un(x)− x|r(x∨ un(x))

=OP

(√
m

k
sup

βn≤x≤T
ϕ(x)r(x∨ un(x))

)
,

where r(x) = (x log(1/x))−1. By monotonicity of ϕ, the inside of the OP can be upper
bounded by √

m

k
sup

βn≤x≤T
ϕ(x∨ un(x))r(x∨ un(x))

and since with probability converging to 1, for every x≤ T , un(x)≤ 2T , this can in turn be
upper bounded (with probability converging to 1) by√

m

k
sup

βn≤x≤2T
ϕ(x)r(x).

It can easily be checked (e.g. by differentiation) that the function ϕ×r is decreasing. Thus,
the above supremum is attained at βn. Finally, elementary computations yield√

m

k
ϕ(βn)r(βn).

√
log log((k/m)2)

log(k/m)
−→ 0.

Overall, we have shown that S(a)
n

P→ 0 uniformly over [0, T ]2. Note that all the bounds we
derived are uniform over all values of y ∈ [0, T ], although it was removed from the notation
for parsimony. In order to deal with S(b)

n , we recall once again that with probability converg-
ing to 1, we have un(x) ≤ 2T for every x ≤ T . Therefore, with probability converging to
1,

sup
(x,y)∈[0,T ]2

∣∣∣S(b)
n (x, y)

∣∣∣= sup
(x,y)∈[0,T ]2

√
m|c(un(x), vn(y))− c(un(x), y)|

≤ sup
x∈[0,2T ],y∈[0,T ]

√
m|c(x, vn(y))− c(x, y)|.

This can be shown to converge in probability to 0 using the exact same proof as for S(a)
n .

We finally conclude that Sn
P→ 0 in `∞([0, T ]2), and the proof for deterministic k = kn is
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complete. It remains to show that the result continues to hold if we replace the determin-
istic sequence k = kn by data-dependent k̂ as outlined in Remark 1. This is established in
Section S1.1.3. �

S1.1.2. Proof of Theorem 2. In view of Equation (S1.3), we require the joint asymptotic
behavior of Hn, un and vn. Define, for (x, y) ∈ [0,∞)2,

L(1)
n (x) =

1

k

n∑
i=1

1

{
Ui ≤

k

n
x

}
and L(2)

n (y) =
1

k

n∑
i=1

1

{
Vi ≤

k

n
y

}
,

a rescaled version of the marginal empirical distribution functions of U and V . We now show
that the D-valued process

(S1.6) (x, y) 7→
(
Hn(x, y),

√
m
(
L(1)
n (x)− x

)
,
√
m
(
L(2)
n (y)− y

))
converges in distribution to the Gaussian process (W,W (1),W (2)) defined in Section 4.1.1
with covariance matrix Λ from Equation (4.2), where D :=

(
`∞([0,2T ]2)

)3.

Again, let I denote the identity map on R. The three processes Hn,
√
m(L

(1)
n − I) and

√
m(L

(2)
n − I) are individually tight (see Lemma S4) and hence it suffices to prove con-

vergence of the marginal distributions. This in turn follows from convergence of the covari-
ance function, by the multivariate Lindeberg-Feller theorem (see van der Vaart (2000), The-
orem 2.27); verification of the Lindeberg condition is similar to condition (B) in the proof of
Lemma S4. The convergence of E [Hn(x, y)Hn(x′, y′)] to c(x∧ x′, y ∧ y′) is already shown
in Lemma S4. Using similar arguments and recalling that m/k→ χ > 0, one easily deals
with the other covariance terms and concludes that the processes in Equation (S1.6) weakly
converge to (W,W (1),W (2)) in D.

Note that the random functions un and vn are the generalized inverses of L(1)
n + 1/k

and L
(2)
n + 1/k, respectively. Because

√
m/k → 0, the term 1/k is negligible. Upon ap-

plying Vervaat’s lemma (Vervaat (1972)), which states that the generalized inverse mapping
is Hadamard differentiable around the identity function, we deduce that the processes Gn,
defined by

Gn(x, y) = (Hn(x, y),
√
m(un(x)− x),

√
m(vn(y)− y)),

weakly converge to (W,−W (1),−W (2)) in D. For t > 0, define the sets

(S1.7) V(t) := {b ∈ `∞([0,2T ]) : ∀x ∈ [0, T ], x+ tb(x) ∈ [0,2T ]}.
Let Dn ⊂ D be the subset of functions a = (a(0), a(1), a(2)) such that a(1)(x, y) is constant
in y, a(2)(x, y) is constant in x and the functions x 7→ a(1)(x, y) and y 7→ a(2)(x, y) are
elements of V(1/

√
m). Let E be the space of equivalence classes L∞([0, T ]2) equipped with

the topology of hypi-convergence. Define the functionals fn : Dn→ E by

fn(a)(x, y) := a(0)(x, y) +
√
m

(
c

(
x+

a(1)(x, y)√
m

,y+
a(2)(x, y)√

m

)
− c(x, y)

)
.

Equation (S1.3) can be rephrased as Wn = fn(Gn) + oP (1), assuming that Gn ∈ Dn,
which is true with probability

P (un(T )≤ 2T, vn(T )≤ 2T )−→ 1.

Let D0 ⊂ D be the subset of continuous functions a such that a(0) = 0. As soon as an ∈
Dn converges uniformly to a ∈ D0, by Lemma S9, fn(an) hypi-converges to f(a), where
f : D0→ E satisfies

f(a) := a(0) + ċ1a
(1) + ċ2a

(2).
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Note that (W,−W (1),−W (2)) concentrates on D0. Therefore, by the extended continuous
mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1),

Wn = fn(Gn) + oP (1) f((W,−W (1),−W (2))) =W − ċ1W
(1) − ċ2W

(2)

in E. It remains to show that the result continues to hold if we replace the deterministic
sequence k = kn by data-dependent k̂ as outlined in Remark 1. This is established in Sec-
tion S1.1.3. �

S1.1.3. Proof that Theorems 1 and 2 continue to hold with k̂. Let ĉ
n,k̂

be the estimator ĉn
computed with the random quantity k̂ instead of k. We shall prove that

√
m|ĉ

n,k̂
− ĉn| → 0 in

probability uniformly over [0, T ]2 (under asymptotic independence) or in the hypi semimetric
(under asymptotic dependence).

Note that the definition of k̂ implies that ĉn(k̂/k, k̂/k) = 1. By assumption, ĉn converges
to c in probability uniformly in a neighborhood of (1,1). Jointly with the fact that c(x,x) =

x1/η , this readily implies that k̂/k→ 1 in probability. Further note that

ĉ
n,k̂

(x, y) =
q(k/n)

q(k̂/n)
ĉn(k̂x/k, k̂y/k).

We first discuss the case of asymptotic independence. By Theorem 1 and by Skorokhod’s
almost sure representation, we may assume that almost surely, ĉn = c+W/

√
m+ o(1/

√
m)

and k̂/k→ 1. The object of interest is then equal, with probability one, to

q(k/n)

q(k̂/n)

√
m

(
ĉn(k̂x/k, k̂y/k)− q(k̂/n)

q(k/n)
ĉn(x, y)

)

=
q(k/n)

q(k̂/n)

{√
m
(
c(k̂x/k, k̂y/k)− q(k̂/n)

q(k/n)
c(x, y)

)
+W (k̂x/k, k̂y/k)−W (x, y)

}
+ o(1)

=−
√
mc(x, y)

(
q(k̂/n)

q(k/n)
−
(
k̂/n

k/n

)1/η
)
q(k/n)

q(k̂/n)
+ o(1),

(S1.8)

where we have used homogeneity of c, regular variation of q and the fact that almost surely,
the sample paths of W are continuous, hence uniformly continuous on compact sets. The
terms o(1) are uniform over [0, T ]2. Finally, it is shown in Lemma S2 that uniformly over
a in a neighborhood of 1, q(at)/q(t) − a1/η = O(q1(t)). Recalling that k̂/k → 1 almost
surely, the first term in Equation (S1.8) is then uniformly of the order of

√
mq1(k/n), which

vanishes by Condition 1(ii).
In the case of asymptotic dependence, Theorem 2 ensures that ĉn = c + B/

√
m +

o(1/
√
m) in the hypi semimetric. We may apply the reasoning above except that, from the

definition of the process B, we get the additional term

(S1.9) −
2∑
j=1

(
ċj(k̂x/k, k̂y/k)W (j)(k̂x/k, k̂y/k)− ċj(x, y)W (j)(x, y)

)

=−
2∑
j=1

ċj(x, y)
(
W (j)(k̂x/k, k̂y/k)−W (j)(x, y)

)
;
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this follows from the fact that under asymptotic dependence, c is homogeneous of order
1 and the directional partial derivatives of such a function, when they exist, are constant
along rays from the origin. The above term vanishes uniformly since ċj has to be locally
bounded (only under asymptotic dependence) and since the sample paths of W (j) are almost
surely continuous. We therefore obtain Equation (S1.8), except that this time the term o(1) is
understood in the hypi semimetric. From here on the proof is completed in the same way as
under asymptotic independence. �

S1.1.4. Proof of Theorem 3. Recall the definition of Ψn from Section 3.2. Letting σ̂n =
n
m ζ̂n, the assumption that (θ̂n, ζ̂n) minimizes the norm of Ψ∗n becomes equivalent to (θ̂n, σ̂n)
minimizing the norm of Ψn. The key is to note that for any θ,σ,

(S1.10) Ψ(θ,σ)−Ψn(θ,σ) =

∫
g(ĉn − c)dµL =

1√
m

∫
gWndµL,

with Wn defined as in Theorems 1 and 2. By the dominated convergence theorem, and
because g is integrable, one easily sees that the functional f 7→

∫
gfdµL is continuous

in `∞([0, T ]2). By Lemma S10, this is also true in the topology of hypi-convergence on
`∞([0, T ]2) at points f that are continuous Lebesgue-almost everywhere on [0, T ]2. It is the
case of both limiting Gaussian processes appearing in Theorems 1 and 2: W , W (1) and W (2)

have almost surely continuous sample paths and under asymptotic dependence, the direc-
tional derivatives ċj are almost everywhere continuous. Those two results and the continuous
mapping theorem then imply that ∫

gWndµL N(0,A).

We may therefore apply Lemma S11 with φ = Ψ, x0 = (θ0,1), Yn = 1√
m

∫
gWndµL and

an = 1/
√
m, and as required we obtain

√
m((θ̂n, σ̂n)− (θ0,1)) = (J>J)−1J>

∫
gWndµL + oP (1) N(0,Σ).

�

S1.2. Spatial estimation. For the proofs in the spatial setting, we assume the framework
of Section 3.3, we define the transformed random variables U (j) = 1− F (j)(X(j)) and for
a pair s, let Q(s) be the distribution function of the random vector (U (s1),U (s2)). Define
the transformed observations U (j)

i = 1 − F (j)(X
(j)
i ) and denote by U (j)

n,1, . . . ,U
(j)
n,n the or-

dered versions thereof and define U (j)
n,0 := 0. For intermediate sequences k(s), we define the

(weighted) empirical tail quantile functions u(s,j)
n , s ∈ P, j ∈ {1,2}, by

u(s,j)
n (x) =

n

k(s)
U

(sj)
n,bk(s)xc, x≥ 0.

Recalling that m(s) = nq(s)(k(s)/n), it allows us to write

ĉ(s)
n (x, y) =

n

m(s)
Q(s)
n

(
k(s)

n
u(s,1)
n (x),

k(s)

n
u(s,2)
n (y)

)
.

where Q
(s)
n denotes the empirical distribution function of (U

(s1)
1 ,U

(s2)
1 ), . . . , (U

(s1)
n ,U

(s2)
n ).

Following the discussion before the proof of Theorem 1, we may define
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H(s)
n (x, y) :=

√
m(s)

{ 1

m(s)

n∑
i=1

I
{
U

(s1)
i ≤ k(s)

n
x,U

(s2)
i ≤ k(s)

n
y
}

− n

m(s)
P
(
U (s1) ≤ k(s)

n
x,U (s2) ≤ k(s)

n
y
)}
.

and similarly obtain
(S1.11)

W (s)
n (x, y) =H(s)

n (x, y) +
√
m(s)

(
c(s)
(
u(s,1)
n (x), u(s,2)

n (y)
)
− c(s)(x, y)

)
+ oP (1) ,

where W (s)
n is defined as in Theorem 4 and the term oP (1) is uniform over compact sets.

S1.2.1. Proof of Theorem 4. For asymptotically independent pairs, the second term of
Equation (S1.11) vanishes uniformly, by the proof of Theorem 1. Define the D-valued pro-
cesses Gn by

Gn(x, y) :=

((
H(s)
n (x, y)

)
s∈P

,
(√

m(s)
(
u(s,1)
n (x)− x

)
,
√
m(s)

(
u(s,2)
n (y)− y

))
s∈PD

)
,

where D =
(
`∞([0,2T ]2)

)|P|+2|PD|. The proof now proceeds similarly to that of Theorem 2;

we show that Gn converges in distribution, that the processes of interest W (s)
n can be approx-

imately represented as a transformation of Gn, and we conclude by applying a continuous
mapping theorem.

For s ∈ P , j ∈ {1,2}, let

L(s,j)
n (x) =

1

k(s)

n∑
i=1

1

{
U (sj) ≤ k(s)

n
x

}
, x≥ 0.

Recall that I denotes the identity mapping on R. By standard arguments (see, e.g., the proofs
of Theorems 1 and 2), we see that each of the processes H(s)

n and
√
m(s)

(
L

(s,j)
n − I

)
con-

verge in distribution in `∞([0,2T ]2), hence they are tight random elements in that space. It
follows that the sequence of processes
(S1.12)

(x, y) 7→
((

H(s)
n (x, y)

)
s∈P

,
(√

m(s)
(
L(s,1)
n (x)− x

)
,
√
m(s)

(
L(s,2)
n (y)− y

))
s∈PD

)
is tight in the product space D. A Lindeberg-type condition (van der Vaart, 2000, Theorem
2.27) can easily be checked, so weak convergence of the process in Equation (S1.12) fol-
lows from convergence of E

[
Gn(x, y)Gn(x′, y′)>

]
to a suitable covariance matrix. This is

simply a consequence of Condition 2; indeed, for suitable pairs s, s′ ∈ P , j, j′ ∈ {1,2} and
(x, y), (x′, y′) ∈ [0,∞)2, this condition implies that

lim
n→∞

E
[
H(s)
n (x, y)H(s′)

n (x′, y′)
]

= Γ(s,s′)((x, y), (x′, y′)),

lim
n→∞

E
[
H(s)
n (x, y)

√
m(s′)

(
L(s′,j)
n (x′)− x′

)]
= Γ(s,s′,j)((x, y), (x′, y′)),

lim
n→∞

E
[√

m(s)
(
L(s,j)
n (x)− x

)√
m(s′)

(
L(s′,j′)
n (x′)− x′

)]
= Γ(s,j,s′,j′)((x, y), (x′, y′)).

We deduce that in D, the processes in Equation (S1.12) weakly converge to the Gaussian
process (

(W (s))s∈P , (W
(s,j))s∈PD,j∈{1,2}

)
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as defined in Section 4.2. Noting that u(s,j)
n is the generalized inverse function of L(s,j)

n +

1/k(s) and that
√
m(s)/k(s)→ 0, we apply Vervaat’s lemma (Vervaat, 1972) to obtain that

(S1.13) Gn G :=
(

(W (s))s∈P , (−W (s,j))s∈PD,j∈{1,2}

)
in D.

Recall the definition of the sets V(t) in Equation (S1.7) and let Dn ⊂ D be the subset of
functions a of the form

(
(a(s))s∈P , (a

(s,j))s∈PD,j∈{1,2}
)

such that a(s,1)(x, y) is constant in y,
a(s,2)(x, y) is constant in x and such that the functions x 7→ a(s,1)(x, y) and y 7→ a(s,2)(x, y)

are elements of V
(
1/
√
m(s)

)
.

Defining E as the product space
(
L∞([0, T ]2)

)|P|, with L∞([0, T ]2) equipped with the
topology of hypi-convergence, consider the following functionals fn : Dn→ E. For an ele-
ment a =

(
(a(s))s∈P , (a

(s,j))s∈PD,j∈{1,2}
)
∈ Dn, fn(a) = (fn(a)(s))s∈P is a function such

that fn(a)(s) = a(s) if s ∈ PI , and

fn(a)(s)(x, y) = a(s)(x, y)+
√
m(s)

(
c(s)

(
x+

a(s,1)(x, y)√
m(s)

, y+
a(s,2)(x, y)√

m(s)

)
− c(s)(x, y)

)
if s ∈ PD . Referring to Equation (S1.11) and recalling that the second term thereof vanishes
if s ∈ PI , we notice that for every pair s, W (s)

n = fn(Gn)(s) + oP (1). This representation, of
course, holds only if Gn ∈Dn; this is satisfied with probability at least

P
(
∀s ∈ PD, j ∈ {1,2}, u(s,j)

n (T )≤ 2T
)
−→ 1

where the last convergence follows by Corollary S1 applied for each s ∈ P . Define f : D0→
E, where D0 ⊂D is the subset of continuous functions a such that a(0) = 0, as

f(a)(s) =

{
a(s), s ∈ PI
a(s) + ċ1a

(s,1) + ċ2a
(s,2), s ∈ PD

.

For a sequence an ∈Dn that converges uniformly to a function a ∈D0, fn(an)→ f(a) in E.
This can be seen by considering each pair separately; the result is obvious for asymptotically
independent pairs, and for asymptotically dependent ones it follows from Lemma S9.

Finally, notice that the process G concentrates on D0. Therefore, by Equation (S1.13)
and the extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem
1.11.1), (

W (s)
n

)
s∈P

= fn(Gn) + oP (1) f(G) =
(
B(s)

)
s∈P

in E. �

S1.2.2. Proof of Theorem 5. Similarly to the bivariate case, let

Ψ(s)
n (θ,σ) := (n/m)Ψ∗(s)n (θ,mσ/n).

As in the proof of Theorem 3, we may deduce that for every pair s, θ ∈ Θ̃ and σ > 0,

Ψ(s)(θ,σ)−Ψ(s)
n (θ,σ) =

∫
g
(
ĉ(s)
n − c(s)

)
dµL =

1√
m

∫
gW (s)

n dµL,

with W (s)
n as defined in Theorem 4. By a similar argument to the bivariate case (involving

the dominated convergence theorem and Lemma S10 to establish continuity of the mapping
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f 7→
∫
gfdµL, see the proof of Theorem 3 for the applicability of Lemma S10), Theorem 4

and the continuous mapping theorem yield

(S1.14)
(∫

gW (s)
n dµL

)
s∈P
 

(∫
gB(s)dµL

)
s∈P

.

The remaining proof consists of a number of successive applications of Lemma S11. We deal
with each of the two estimators separately.

(i) For each pair s, applying Lemma S11 with φ= Ψ(s), x0 = (h(s)(ϑ0),1), an = 1/
√
m and

Yn = 1√
m

∫
gW

(s)
n dµL yields

(S1.15) θ̂(s)
n − h(s)(ϑ0) =

1√
m
D(s)

∫
gW (s)

n dµL + oP

(
1√
m

)
,

where D(s) is the block corresponding to the pair s in the matrix D defined in Equa-
tion (4.4); its existence, as well as the required smoothness of φ, are guaranteed by Con-
dition 3. Now redefining φ as φ(ϑ) =

(
h(s)(ϑ)− h(s)(ϑ0)

)
s∈P , we see that ϑ̂n is in fact

a minimizer of the norm of φ(ϑ) − Yn, where Yn is redefined as
(
θ̂

(s)
n − h(s)(ϑ0)

)
s∈P .

Applying Lemma S11 again with φ and Yn as above, x0 = ϑ0 and an = 1/
√
m, we obtain

ϑ̂n − ϑ0 = (J>1 J1)−1J>1 Yn + oP

(
1√
m

)
=

1√
m

(J>1 J1)−1J>1

(
D(s)

∫
gW (s)

n dµL

)
s∈P

+ oP

(
1√
m

)
,

where the last equality follows from Equation (S1.15) and J1 is defined as in Section 4.2
in the paragraph below Equation (4.4). The conclusion that

√
m(ϑ̂n − ϑ0) N(0,Σ1)

follows from this and Equation (S1.14).
(ii) Let σ̃n = n

m ζ̃n ∈R
|P|
+ . Once more, we redefine

Yn =
1√
m

(∫
gW (s)

n dµL

)
s∈P

and φ(ϑ,σ) =
(

Ψ(s)(h(s)(ϑ), σ(s))
)
s∈P

.

The estimator (ϑ̃n, σ̃n) can be seen to minimize the norm of φ− Yn. Therefore, applying
Lemma S11 with an = 1/

√
m and x0 = (ϑ0,1, . . . ,1), we obtain

(ϑ̃n, σ̃n)− (ϑ0,1, · · · ,1) =
1√
m

(J>2 J2)−1J>2

(∫
gW (s)

n dµL

)
s∈P

+ oP

(
1√
m

)
,

which, combined with Equation (S1.14), implies
√
m((ϑ̃n, σ̃n) − (ϑ0,1, · · · ,1))  

N(0,Σ2).

�

S2. Technical results used in Section S1. Throughout the paper, particularly the proof
of Lemma S2 below, we use (without reference when obvious) the following results on reg-
ularly varying functions at 0.

LEMMA S1. Suppose the functions f1 and f2 are regularly varying at 0 with indices ρ1

and ρ2, respectively.

(i) If ρ1 > 0 (respectively ρ1 < 0), limt→0 f1(t) = 0 (respectively∞).
(ii) For any α ∈R, fα1 is (αρ1)–RV at 0.
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(iii) The product f1f2 is (ρ1 + ρ2)–RV at 0.
(iv) If limt→0 f2(t) = 0, then f1 ◦ f2 is (ρ1ρ2)–RV at 0.
(v) If ρ1 > 0, then f−1

1 is (1/ρ1)–RV at 0, where we define the generalized inverse of f1 as

f−1
1 (t) = inf{u > 0 : f1(u)≥ t}.

PROOF. The assertions (ii) and (iii) are trivial consequences of the definition of regular
variation. As for (i), (iv) and (v), analogue versions for regularly varying functions at∞ are
proved in Proposition 0.8 of Resnick (1987). The proof can readily be adapted, using the fact
that f is ρ–RV at 0 if and only if u 7→ 1/f(1/u) is ρ–RV at∞.

LEMMA S2. (i) Assume Equation (3.1). Then there exists η ∈ (0,1] such that q is a
regularly varying (RV) function at 0 with index 1/η and c is 1/η-homogeneous.

(ii) Assume Condition 1(i) and suppose that q1 is non-decreasing and that there exists b > 1
such that q1(bt) = O(q1(t)) as t→ 0. Then Equation (3.1) holds locally uniformly on
[0,∞)2.

REMARK S1. In part (ii) of the previous result, the monotonicity condition on q1 is
artificial; it can be removed at the cost of replacing q1(t) by the non-decreasing function
q̄1(t) := sup0<s≤t q1(s). Indeed, if Condition 1 is satisfied with q1, it is trivially satisfied
with q̄1. Moreover, if q1(bt) =O(q1(t)), q̄1 also satisfies the same property.

Because q1 is positive non-decreasing, that required property implies that q1(bt) =
O(q1(t)) holds for every b ≥ 1 (Bingham, Goldie and Teugels, 1987, Corollary 2.0.6). The
function q1 is then said to be O-regularly varying at 0.

PROOF. (i) Recall that we assume c(1,1) = 1. For any x > 0, Equation (3.1) implies that
Q(tx, tx) = q(t)(c(x,x) + o(1)) and Q(tx, tx) = q(tx)(1 + o(1)). This can be manipu-
lated into

q(tx)

q(t)
=
c(x,x) + o(1)

1 + o(1)
−→ c(x,x).

By Karamata’s characterization theorem (Bingham, Goldie and Teugels, 1987, Theorem
1.4.1), q has to be ρ–RV and c(x,x) = xρ, for some ρ ∈ R. However, since q(t) ≤ t, we
must have ρ≥ 1. Moreover, for any a,x, y > 0,

c(ax,ay) = lim
t→0

Q(atx, aty)

q(t)
= lim
t→0

Q(tx, ty)

q(t/a)
= lim
t→0

Q(tx, ty)

q(t)

q(t)

q(t/a)
= aρc(x, y).

Defining η = 1/ρ, this proves (i).
(ii) For arbitrary (x, y) ∈ [0,∞)2, we write (x, y) = a(u, v). We will prove that Equa-

tion (3.1) holds uniformly over all (u, v) ∈ S+ and over a ∈ (0, b], for an arbitrary
b ∈ [1,∞).

We have

(S2.1)
Q(tx, ty)

q(t)
=
Q(atu, atv)

q(t)
=
q(at)

q(t)

Q(atu, atv)

q(at)
.

First, the term Q(atu, atv)/q(at) is equal to c(u, v) +O(q1(at)) uniformly in (u, v) ∈
S+. In order to control the term q(at)/q(t), we note that since q is 1/η-RV, there exists a
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slowly varying function L such that for any a > 0,

L(at)

L(t)
− 1 = a−1/η

(
q(at)

q(t)
− c(a,a)

)
= a−1/η

(
Q(at, at)(1 +O(q1(at)))

q(t)
− c(a,a)

)
= a−1/η

(
Q(at, at)

q(t)
− c(a,a) +O(q1(at))

)
=O(q1(t) + q1(at)) =O(q1(bt)) =O(q1(t)),

where we have used the fact that Q(at, at) = q(at)(1 +O(q1(at))), which can be reversed
into q(at) = Q(at, at)(1 + O(q1(at))). The function L is thus slowly varying with re-
mainder (Bingham, Goldie and Teugels, 1987, Section 3.12). By theorem 3.12.1 of that
book, the previous relation holds uniformly over all a ∈ (1/2, b], so we henceforth fo-
cus on values a ∈ (0,1/2]. Using Theorem 3.12.2 of the same book (which we adapt for
slow variation at 0), we obtain that for some constants C ∈R, T0 ∈ (0,∞) and for t small
enough,

L(t) = exp

{
C + δ1(t) +

∫ T0

t

δ2(s)

s
ds

}
,

where the functions δj are real-valued, measurable and satisfy |δj(t)| ≤Kq1(t) for some
constant K ∈ (0,∞). The ratio L(at)/L(t) becomes

L(at)

L(t)
= exp

{
δ1(at)− δ1(t) +

∫ t

at

δ2(s)

s
ds

}
.

As t→ 0, we can use the monotonicity of q1 to control the integral in the previous
display: ∣∣∣∣∫ t

at

δ2(s)

s
ds

∣∣∣∣≤K ∫ t

at

q1(s)

s
ds≤Kq1(t)

∫ t

at

ds

s
=Kq1(t) log

(
1

a

)
.

Because a ≤ 1/2, log(1/a) is lower bounded, so K can be chosen large enough so
that Kq1(t) log(1/a) also upper bounds the absolute value of δ1(at)− δ1(t) +

∫ t
at
δ2(s)
s ds.

Therefore, using the fact that for every h ∈R, |eh − 1| ≤ e|h| − 1, we obtain∣∣∣∣L(at)

L(t)
− 1

∣∣∣∣≤ exp

{
Kq1(t) log

(
1

a

)}
− 1 = a−Kq1(t) − 1.

What we are interested in is bounding q(at)/q(t)− a1/η . This can be done by recalling
that

(S2.2)
∣∣∣∣q(at)q(t)

− a1/η

∣∣∣∣= a1/η

∣∣∣∣L(at)

L(t)
− 1

∣∣∣∣≤ a1/η
(
a−Kq1(t) − 1

)
=: τ(a, t).

By simple differentiation, it is straightforward to see that for a fixed value of t small
enough so that Kq1(t)< 1/η, the function τ is differentiable in its first argument and that

∂

∂a
τ(a, t) = a1/η−1

(
(1/η−Kq1(t))a−Kq1(t) − 1/η

)
.
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This suggests that the function attains its unique maximum at the point amax(t) :=
(1− ηKq1(t))1/(Kq1(t)). Considering Equation (S2.2), we obtain that for all a ∈ (0,1/2],∣∣∣∣q(at)q(t)

− a1/η

∣∣∣∣≤ τ(amax(t), t)

= (1− ηKq1(t))1/(ηKq1(t))

(
1

1− ηKq1(t)
− 1

)
=O(q1(t))

as t→ 0, since (1− ηKq1(t))1/(ηKq1(t))→ e−1 and since the function x 7→ 1/(1− x) is
continuously differentiable at 0. Finally, this allows us to rewrite Equation (S2.1) as

Q(tx, ty)

q(t)
=
(
a1/η +O(q1(t))

)
(c(u, v) +O(q1(at))) = a1/ηc(u, v) +O(q1(t)),

and the last equation holds uniformly over a ∈ (0, b] and (u, v) ∈ S+. The proof is over
since a1/ηc(u, v) = c(x, y).

LEMMA S3. Let ϕ : (0, T ]→ (0,∞) be a non-decreasing function such that ϕ(t)/
√
t→

∞ as t→ 0 and assume there exists c > 0 such that∫ T

0

1

x
exp

{
−cϕ

2(x)

x

}
dx <∞.

Then under the assumptions of Theorem 1, for every λ ∈ (0,1) we have

sup
λ/k≤x≤T

√
k

ϕ(x)
|un(x)− x|=OP (1) ,

where un is defined as in Section S1.1. In particular, note that ϕ(x) := 1, as well as any
function that satisfies ϕ(x) :=

√
x log log(1/x) in a neighborhood of 0, are valid choices.

PROOF. This is essentially proved in Csörgő and Horváth (1987), up to a slight difference
between their definition of the quantiles and ours. We prove here that this difference does not
change the result. More precisely, their Theorem 2.6 (ii) states that

(S2.3) sup
λ/k≤x≤T

|wn(x)|
ϕ(x)

=OP (1) ,

where we denote wn what they call vn (to avoid confusion with our definitions). From their
definitions, one easily sees that

wn(x) =
n√
k

(
k

n
x−Un,dkxe

)
=
√
k
(
x− n

k
Un,dkxe

)
.

Then, by the reverse triangle inequality,

|
√
k|un(x)− x| − |wn(x)|| ≤ |

√
k(un(x)− x) +wn(x)|

=
√
k
∣∣∣un(x)− n

k
Un,dkxe

∣∣∣= n√
k

(
Un,dkxe −Un,bkxc

)
.
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Using this and the inequality bxc ≥ dxe − 1, we have∣∣∣∣∣ sup
λ/k≤x≤T

√
k

ϕ(x)
|un(x)− x| − sup

λ/k≤x≤T

|wn(x)|
ϕ(x)

∣∣∣∣∣
≤ n√

k
sup

λ/k≤x≤T

1

ϕ(x)

(
Un,dkxe −Un,bkxc

)
≤ n√

k
sup

λ/k≤x≤T

1

ϕ(x)

(
Un,dkxe −Un,dkxe−1

)
≤ n√

k
sup

λ/k≤x≤(1+λ)/k

1

ϕ(x)

(
Un,dkxe −Un,dkxe−1

)
+

n√
k

sup
(1+λ)/k≤x≤T

1

ϕ(x)

(
Un,dkxe −Un,dkxe−1

)
.(S2.4)

In the first term, since λ/k ≤ x≤ (1 + λ)/k and λ ∈ (0,1), we must have dkxe ∈ {1,2}.
Therefore, we end up studying Un,i−Un,i−1, for some i ∈ {1,2}. It is a well known fact that
those differences, regardless of the value of i, have a Beta distribution with parameters 1 and
n. In particular, they are both OP (1/n). It follows that the first supremum on the right hand
side of Equation (S2.4) is asymptotically bounded in probability by

1√
k

sup
λ/k≤x≤(1+λ)/k

1

ϕ(x)
=

1√
kϕ(λ/k)

−→ 0

by assumption on ϕ. As for the second term in Equation (S2.4), it is equal to

n√
k

sup
(1+λ)/k≤x≤T

1

ϕ(x)

(
Un,dkxe −Un,dk(x−1/k)e

)
=

n√
k

sup
λ/k≤x≤T−1/k

1

ϕ(x+ 1/k)

(
Un,dk(x+1/k)e −Un,dkxe

)
after shifting x to the right by 1/k. Using Equation (S2.3), this is in turn equal to

n√
k

sup
λ/k≤x≤T−1/k

1

ϕ(x+ 1/k)

(
k

n

(
x+

1

k

)
− k

n
x

)
+

n√
k
OP

(√
k

n

)

=
1√
k

sup
λ/k≤x≤T−1/k

1

ϕ(x+ 1/k)
+OP (1)

=
1√

kϕ((1 + λ)/k)
+OP (1)

=OP (1)

once again by the properties of ϕ. We have shown that the difference between the quantity we
are interested in and the term appearing in Equation (S2.3) is OP (1). We may thus conclude,
by Equation (S2.3), that

sup
λ/k≤x≤T

√
k

ϕ(x)
|un(x)− x|= sup

λ/k≤x≤T

|wn(x)|
ϕ(x)

+OP (1) =OP (1) .
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COROLLARY S1. Define the random functions un and vn as in Section S1.1. Then, as
n→∞,

sup
0≤x≤2T

|un(x)− x| and sup
0≤y≤2T

|vn(y)− y|

are both OP
(

1/
√
k
)

.

PROOF. Note that by definition, un(z) = vn(z) = 0 whenever z < 1/k. It follows that

sup
0≤x≤2T

|un(x)− x| ≤ sup
0≤x<1/k

|un(x)− x|+ sup
1/k≤x≤2T

|un(x)− x|

= sup
0≤x<1/k

x+ sup
1/k≤x≤2T

|un(x)− x|

=
1

k
+ sup

1/k≤x≤2T
|un(x)− x|.

This is OP
(

1/
√
k
)

by the preceding Lemma S3 with the function ϕ(x) = 1. The same
proof holds with un replaced by vn.

LEMMA S4. Under Condition 1 the process Hn as defined in Equation (S1.1) converges
to the process W from Theorem 1 in `∞([0,2T ]2).

PROOF. Denoting fn,(x,y)(u, v) :=
√

n
m1
{
u≤ k

nx, v ≤
k
ny
}

, we see that Hn can be writ-
ten as

Hn(x, y) =
√
n

(
1

n

n∑
i=1

fn,(x,y)(Ui, Vi)−E
[
fn,(x,y)(U,V )

])
.

Therefore, convergence of the process Hn to a Gaussian process in `∞([0,2T ]2) is equiv-
alent to checking that the sequence of function classes

Fn = {fn,(x,y) : (x, y) ∈ [0,2T ]2}

are Donsker classes for the distribution of (U,V ). This is guaranteed by Theorem 11.20 of
Kosorok (2008), provided that we can check the six conditions. Note that Fn admits the
envelope function Fn = fn,(2T,2T ).

(0) First, the AMS condition is trivially satisfied; by right continuity of indicator functions,
for any n ∈N, (x, y) ∈ [0,2T ]2 and (u, v) ∈ [0,1]2,

inf
(x′,y′)∈Q2

|fn,(x′,y′)(u, v)− fn,(x,y)(u, v)|= 0.

It follows that Equation (11.7) of Kosorok (2008) is satisfied with Tn = Q2, which is
countable. Hence the classes Fn are AMS.

(A) For every n, it is easily checked that Fn is a VC class with VC-index 2. Therefore,
condition (A) is a direct consequence of Lemma 11.21 of Kosorok (2008).

(B) For (x, y), (x′, y′) ∈ [0,2T ]2 arbitrary, it follows from the definition of Hn that

E
[
Hn(x, y)Hn(x′, y′)

]
= E

[
fn,(x,y)(U,V )fn,(x′,y′)(U,V )

]
−E

[
fn,(x,y)(U,V )

]
E
[
fn,(x′,y′)(U,V )

]
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=
n

m
P
(
U ≤ k

n
(x∧ x′), V ≤ k

n
(y ∧ y′)

)
− n

m
P
(
U ≤ k

n
x,V ≤ k

n
y

)
P
(
U ≤ k

n
x′, V ≤ k

n
y′
)
.

Recall that n/m= 1/q(k/n). Therefore, the first term of the last display converges to
c(x ∧ x′, y ∧ y′). The second term vanishes since both probabilities are of the order of
m/n. The convariance functions of Hn thus converge pointwise to the covariance function
of W .

(C) By definition of the envelope functions and by assumption, we have

lim sup
n→∞

E
[
F 2
n(U,V )

]
= lim sup

n→∞

n

m
P
(
U ≤ k

n
2T,V ≤ k

n
2T

)
= c(2T,2T )<∞.

(D) For every ε > 0,

E
[
F 2
n(U,V )1

{
Fn(U,V )> ε

√
n
}]
≤ n

m
1

{√
n

m
> ε
√
n

}
,

which is equal to 0 as soon as m≥ ε−2.
(E) We first recall that for arbitrary events A,B,

P (1A 6= 1B) = P (A\B) + P (B\A) = P (A) + P (B)− 2P (A∩B) .

A direct application of this fact yields

ρ2
n((x, y), (x′, y′)) : = E

[
(fn,(x,y)(U,V )− fn,(x′,y′)(U,V ))2

]
=
n

m
P
(
1

{
U ≤ k

n
x,V ≤ k

n
y

}
6= 1

{
U ≤ k

n
x′, V ≤ k

n
y′
})

=
n

m
P
(
U ≤ k

n
x,V ≤ k

n
y

)
+
n

m
P
(
U ≤ k

n
x′, V ≤ k

n
y′
)

− 2
n

m
P
(
U ≤ k

n
(x∧ x′), V ≤ k

n
(y ∧ y′)

)
−→ c(x, y) + c(x′, y′)− 2c(x∧ x′, y ∧ y′)

=: ρ2((x, y), (x′, y′)).

Moreover, by Lemma S2(ii), this convergence is uniform over [0,2T ]4. This means
that for any sequences xn, yn, x

′
n, y
′
n in [0,2T ] such that ρ((xn, yn), (x′n, y

′
n)) → 0,

ρn((xn, yn), (x′n, y
′
n)) is equal to

{ρn((xn, yn), (x′n, y
′
n))− ρ((xn, yn), (x′n, y

′
n))}+ ρ((xn, yn), (x′n, y

′
n))

≤ sup
(x,y,x′,y′)∈[0,2T ]4

|ρn((x, y), (x′, y′))− ρ((x, y), (x′, y′))|

+ ρ((xn, yn), (x′n, y
′
n))

−→ 0.

Finally, the theorem implies that Hn W in `∞([0,2T ]2).
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LEMMA S5. Let Q be a bivariate copula. If there exists a positive function q and a finite
function c that is not everywhere 0 such that for every (x, y) ∈ [0,∞)2, as n→∞,

Q(x/n, y/n)

q(1/n)
−→ c(x, y),

then there exists a measure ν such that for every (x, y) ∈ [0,∞)2, c(x, y) = ν((0, x]× (0, y]).
Note that Equation (3.1) satisfies this setting.

PROOF. Define the measures νn by

νn((0, x]× (0, y]) =
Q(x/n, y/n)

q(1/n)

and fix a ∈ (0,∞). Note that since c is not everywhere 0, c(a,a) is eventually positive, so for
n and a large enough, νn((0, a]2)> 0. Then clearly

Pn,a :=
(
νn((0, a]2)

)−1
νn

is a probability measure on [0, a]2. Since it is supported on the same compact set for every
n, the sequence {Pn,a : n ∈ N} is tight. Thus, by Helly’s selection theorem there exists a
probability measure Pa also supported on [0, a]2 and a subsequence {nj : j ∈ N} such that
Pnj ,a Pa. However, by definition of νn, we have for every (x, y) ∈ [0, a]2

Pnj ,a((0, x]× (0, y])−→ c(x, y)

c(a,a)
.

Therefore, we must have Pa((0, x]× (0, y]) = c(x, y)/c(a,a), so choosing νa = c(a,a)Pa,
the result holds for every (x, y) ∈ [0, a]2. However, the value of νa((0, x] × (0, y]) is inde-
pendent of a (as long as x ∨ y ≤ a), so νa can be uniquely extended to a measure ν on the
bounded Borel sets of [0,∞)2.

LEMMA S6 (similar to Theorem 1 in Ramos and Ledford (2009)). Define the function
c as in Equation (3.1). Then there exists a finite measure H on [0,1] such that, for every
(x, y) ∈ [0,∞)2,

c(x, y) =

∫
[0,1]

(
x

1−w
∧ y

w

)1/η

H(dw).

It is also useful to note that this integral is equal to∫
[
0, y

x+y

]
(

x

1−w

)1/η

H(dw) +

∫
(

y

x+y
,1
] ( y
w

)1/η
H(dw).

PROOF. By Lemma S5, we can write

(S2.5) c(x, y) = ν((0, x]× (0, y]) =

∫
[0,∞)2

1(0,x]×(0,y]dν =

∫
[0,∞)2\{0}

1[0,x]×[0,y]dν.

In the last equality, nothing changed since ν((0, x] × {0} ∪ {0} × (0, y]) ≤ c(x,0) +
c(0, y) = 0. Then, through the mapping f : [0,∞)2\{0} → (0,∞) × [0,1] defined by
f(x, y) = (x+ y, y

x+y ), define the push-forward measure µ= ν ◦ f−1. By homogeneity of ν,
we see that µ is a product measure:

µ((0, r]× (0,w]) = r1/ηµ((0,1]× (0,w]) =:G((0, r])H((0,w]),
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where G is a measure on (0,∞) and H is a measure on [0,1]. Finally, for any (x, y), define
the function g : (0,∞)× [0,1]→R as

g(r,w) = 1

{
r ≤ x

1−w
∧ y

w

}
,

so that g ◦ f = 1[0,x]×[0,y]. Using Equation (S2.5) and Theorem 9.15 from Teschl (1998), we
have

c(x, y) =

∫
[0,∞)2\{0}

g ◦ fdν

=

∫
(0,∞)×[0,1]

gdµ

=

∫
[0,1]

∫
(0,∞)

1(0, x

1−w∧
y

w ](r)G(dr)H(dw)

=

∫
[0,1]

(
x

1−w
∧ y

w

)1/η

H(dw),

where we used Fubini’s theorem to write the integral with respect to the product measure µ
as a double integral. Moreover, note that H is finite since

H([0,1]) = µ((0,1]× [0,1]) = ν
({

(x, y) ∈ [0,∞)2 : x+ y ≤ 1
})
≤ c(1,1) = 1.

LEMMA S7. Define the function c as in Equation (3.1). Then for every (x, y) ∈ [0, T ]2

and h > 0,

c(x+ h, y)− c(x, y)≤ 1

η
h
c(x+ h, y)

x+ h
.

PROOF. By Lemma S6, write

c(x, y) =

∫
[0,1]

(
x

1−w
∧ y

w

)1/η

H(dw) =:

∫
[0,1]

f(x, y,w)H(dw).

Clearly, it is sufficient to prove that for every x, y,h,w,

(S2.6) f(x+ h, y,w)− f(x, y,w)≤ 1

η
h
f(x+ h, y,w)

x+ h
,

because then the result follows by integrating both sides. To prove Equation (S2.6), first note
that for any y,w,

f(x, y,w) =


(

x
1−w

)1/η
, x≤ 1−w

w y( y
w

)1/η
, x≥ 1−w

w y
.

As a function of x, this is continuously differentiable everywhere on (0, T ] except at the
change point x= 1−w

w y and its derivative with respect to x, f ′, is equal to f(x, y,h)/(ηx) on
the first part and 0 on the second. From here we consider three different cases, depending on
the position of the change point with respect to x and x+ h.

First, if x+ h≤ 1−w
w y,

f(x+ h, y,w)− f(x, y,w) = hf ′(ξ, y,w) = h
f(ξ, y,w)

ηξ
,
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for some ξ ∈ [x,x+ h], by Taylor’s theorem. By monotonicity, this is upper bounded by

1

η
h
f(x+ h, y,w)

x+ h
.

Next, if 1−w
w y ≤ x, f(x+ h, y,w)− f(x, y,w) = 0 so the result is trivial.

Finally, if x < 1−w
w y < x+ h,

f(x+ h, y,w)− f(x, y,w) = f

(
1−w
w

y,y,w

)
− f(x, y,w) =

(
1−w
w

y− x
)
f(ξ, y,w)

ηξ
,

for ξ between x and 1−w
w y, once again by Taylor’s theorem. By monotonicity, we have

f(ξ, y,w)

ηξ
≤ 1

η 1−w
w y

( y
w

)1/η
=

1

η 1−w
w y

f(x+ h, y,w).

Moreover,
1−w
w y− x
1−w
w y

≤ (x+ h)− x
(x+ h)

=
h

x+ h
,

because the function t 7→ (t− x)/t is non-decreasing. Piecing everything together, we have

f(x+ h, y,w)− f(x, y,w)≤ 1

η
h
f(x+ h, y,w)

x+ h
.

We have proved that Equation (S2.6) holds for every (x, y) ∈ [0, T ]2, h > 0 and w ∈ [0,1].

LEMMA S8. Define the function c as in Equation (3.1) and assume Condition 1(i). Then
there exists a constant K :=KT <∞ such that for every (x, y) ∈ [0, T ]2,

c(x, y)≤ K

log(1/x)
.

PROOF. We will prove that as x→ 0,

c(x, y).
1

log(1/x)

uniformly for all y ∈ [0, T ]. Since c is locally bounded, the result will follow.
Since Condition 1(i) is satisfied, we may assume it is satisfied with the function q1(t) =

1/ log(1/t). Recall that as t ↓ 0, by Lemma S2,

Q(tx, ty) = q(t)c(x, y) +O(q(t)q1(t))

uniformly over all (x, y) ∈ [0, T ]2. That is,

(S2.7) c(x, y) =
Q(tx, ty)

q(t)
+O(q1(t))≤ tx

q(t)
+O(q1(t))

uniformly, by Lipschitz continuity of the copula Q. The previous relation holds whenever
t→ 0, and in particular it holds when t and x are related and both tend to 0.

Define g(t) = q(t)q1(t)/t→ 0 as t→ 0. We argue, in the following, that for any x small
enough, there exists t(x) > 0 such that x ≤ g(t(x)) ≤ 21/ηx. Plugging t(x) into Equa-
tion (S2.7), we find that as x→ 0,

(S2.8) c(x, y)≤ t(x)x

q(t(x))
+O(q1(t(x))) =O(q1(t(x))),
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because, since we assume x≤ g(t(x)),

t(x)x

q(t(x))
≤ t(x)

q(t(x))
g(t(x)) = q1(t(x)).

Moreover, since the function g is ρ-RV at 0, ρ := 1/η − 1, for small enough t we have
g(t)≥ tα, as long as α> ρ. This means that

q1(t(x)) =
1

log(1/t(x))
=

α

log(1/t(x)α)
.

1

log(1/g(t(x)))
.

Finally, by the assumption that g(t(x))≤ 21/ηx, we get

q1(t(x)).
1

log(1/g(t(x)))
.

1

log(1/x)

which, in conjunction with Equation (S2.8), yields the desired bound for c(x, y) as x→ 0,
uniformly over bounded y.

The only thing left is to prove the existence of a point t(x) such that g(t(x)) ∈ [x,21/ηx]
for every small enough x. This can be done by using the fact that the function g is ρ-RV at 0.
Applying Theorem 1.5.6(iii) in Bingham, Goldie and Teugels (1987) (adapted to functions of
regular variation at 0) with any δ ∈ (0,1) and A= 21−δ , we find that there exists T0 ∈ (0,∞)
such that for every t≤ T0,

g(t)

g(t/2)
≤ 21−δ2ρ+δ = 21/η.

We now construct a non-increasing sequence the follwing way: take t0 = T0 and for n ∈N,
define tn = tn−1/2 if g(tn−1/2)≤ g(tn−1). Otherwise, tn = tn−1/4 if g(tn−1/4)≤ g(tn−1).
Otherwise, we try tn−1/8, etc. In general

tn = max

{
tn−1

2k
: k ∈N, g

(
tn−1

2k

)
≤ g(tn−1)

}
.

Therefore, the sequence satisfies, for every natural n,

(S2.9) 1≤ g(tn)

g(tn+1)
≤ 21/η.

Now choose any x ∈ (0, T0/2] and let t= minn∈N{tn : g(tn)≥ x}. Clearly, g(t)≥ x, and
g(t) has to be ≤ 21/ηx. Indeed, suppose the opposite. Then by Equation (S2.9), g(tn+1) ≥
g(t)/21/η > x, which contradicts the definition of t. We conclude that for every x ∈ (0, T0/2],
the desired t(x) exists.

LEMMA S9. Assume the setting of Theorem 2. For arbitrary positive t and T , let

V(t) := {b ∈ `∞([0,2T ]) : ∀x ∈ [0, T ], x+ tb(x) ∈ [0,2T ]}.

Let tn ↓ 0 and assume that bn := (b
(1)
n , b

(2)
n ) ∈ V(tn)2 converges uniformly to a continuous

function b = (b(1), b(2)) such that b(1)(0) = b(2)(0) = 0. Then, the functions gn : [0, T ]→ R
defined by

gn(x, y) :=
c
(
x+ tnb

(1)
n (x), y+ tnb

(2)
n (y)

)
− c(x, y)

tn

hypi-converge to ċ1(x, y)b(1)(x) + ċ2(x, y)b(2)(y), where ċ1 and ċ2 are defined as in Sec-
tion 4.1.1.
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PROOF. Let ` be the stable tail dependence function associated to the random vector
(X,Y ). Because we assume asymptotic dependence, we know that χ := limt↓0 q(t)/t > 0
and that c(x, y) = (x+ y− `(x, y))/χ. Then,

gn(x, y) = χ−1

b(1)
n (x) + b(2)

n (y)−
`
(
x+ tnb

(1)
n (x), y+ tnb

(2)
n (y)

)
− `(x, y)

tn

 .

By assumption, the sum of the first two terms converges uniformly to b(1)(x)+b(2)(y). Let
S ⊂ [0,∞)2 be the set of points where ` is differentiable. Since ` is convex, the complement
of S is Lebesgue-null and the gradient of ` is continuous on S (Rockafellar, 1970, Theorem
25.5). By Lemma F.3 of Bücher, Segers and Volgushev (2014), the last term hypi-converges
to

L1(x, y) := sup
ε>0

inf
{

˙̀
1(x′, y′)b(1)(x′) + ˙̀

2(x′, y′)b(2)(y′) : (x′, y′) ∈ S,‖(x, y)− (x′, y′)‖< ε
}
,

where ˙̀
j are defined like ċj : ˙̀

1(x, y) is the first partial derivative at (x, y) from the left, except
if x= 0 in which case it is from the right, and ˙̀

2 is always the second partial derivative from
the right. We argue below that the hypi-distance between the functions L1 and L2, defined
by L2(x, y) = ˙̀

1(x, y)b(1)(x) + ˙̀
2(x, y)b(2)(y), is 0. That is, L1 and L2 belong to the same

equivalence class in the space L∞([0,2T ]2) and hypi-convergence to L1 is equivalent to
hypi-convergence to L2. It follows that gn(x, y) hypi-converges to

(S2.10)
b(1)(x) + b(2)(y)−L2(x, y)

χ
= ċ1(x, y)b(1)(x) + ċ2(x, y)b(2)(y),

where the last equality is a consequence of the relation ˙̀
j(x, y) = 1− χċj(x, y), j ∈ {1,2}.

To prove the equivalence between L1 and L2, first note that by continuity of b(1) and b(2),

L1(x, y) := sup
ε>0

inf
{

˙̀
1(x′, y′)b(1)(x) + ˙̀

2(x′, y′)b(2)(y) : (x′, y′) ∈ S,‖(x, y)− (x′, y′)‖< ε
}
.

Let ˙̀−
j and ˙̀+

j denote the directional partial derivatives of ` from the left and right, respec-
tively. The function L2 can then be expressed the following way, and we analogously define
L3:

L2(x, y) = ˙̀−
1 (x, y)b(1)(x)+ ˙̀+

2 (x, y)b(2)(y), L3(x, y) := ˙̀+
1 (x, y)b(1)(x)+ ˙̀−

2 (x, y)b(2)(y).

The main tool is the homogeneity property of ` (`(ax,ay) = a`(x, y), a≥ 0). It implies that
the directional derivatives ˙̀±

j are constant along rays of the form {az : a > 0}, z ∈ (0,∞)2

and therefore that S consists exactly of a dense union of such rays.
Fix a point (x, y) ∈ (0,∞)2. For any sufficiently small ε > 0, the open ε-ball B(ε) around

(x, y) can be partitioned into the two open “half-balls"

B1(ε) := {(x′, y′) ∈B(ε) : y′/x′ > y/x}, B2(ε) := {(x′, y′) ∈B(ε) : y′/x′ < y/x}

and the line B3(ε) := {(x′, y′) ∈B(ε) : y′/x′ = y/x}. Provided that ε is sufficiently small,
there exists a positive δ = δ(ε) such that δ(ε)→ 0 as ε→ 0, such that each point in B1(ε) is
on the same ray as some u ∈ (x−δ,x]×{y} and some v ∈ {x}× [y, y+δ) and such that each
point inB2(ε) is on the same ray as some u ∈ (x,x+δ)×{y} and some v ∈ {x}× (y−δ, y).
By Rockafellar (1970), Theorem 24.1, we have

lim
δ↓0

˙̀±
1 (x− δ, y) = ˙̀−

1 (x, y), lim
δ↓0

˙̀±
1 (x+ δ, y) = ˙̀+

1 (x, y),

lim
δ↓0

˙̀±
2 (x, y− δ) = ˙̀−

2 (x, y), lim
δ↓0

˙̀±
2 (x, y+ δ) = ˙̀+

2 (x, y).
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Then, as ε → 0, the vectors ( ˙̀±
1 (x′, y′), ˙̀±

2 (x′, y′)) converge to ( ˙̀−
1 (x, y), ˙̀+

2 (x, y)) for
(x′, y′) ∈B1(ε) and to ( ˙̀+

1 (x, y), ˙̀−
2 (x, y)) for (x′, y′) ∈B2(ε). It follows by continuity of b

that for any sufficiently small ε > 0,

lim
(x′,y′)→(x,y),(x′,y′)∈B1(ε)

L2(x′, y′) = lim
(x′,y′)→(x,y),(x′,y′)∈B1(ε)

L3(x′, y′) = L2(x, y)(S2.11)

lim
(x′,y′)→(x,y),(x′,y′)∈B2(ε)

L2(x′, y′) = lim
(x′,y′)→(x,y),(x′,y′)∈B2(ε)

L3(x′, y′) = L3(x, y)(S2.12)

In particular, since ˙̀±
j are constant on B3(ε), the semicontinuous hulls of L2 are

L2,∧(x, y) := sup
ε>0

inf
{
L2(x′, y′) : (x′, y′) ∈B(ε)

}
= L2(x, y)∧L3(x, y),

L2,∨(x, y) := inf
ε>0

sup
{
L2(x′, y′) : (x′, y′) ∈B(ε)

}
= L2(x, y)∨L3(x, y),

and since B1(ε) ∩ S and B2(ε) ∩ S are always nonempty, the preceding relations also hold
if B(ε) is intersected with S , whence

L1(x, y) = sup
ε>0

inf
{
L2(x′, y′) : (x′, y′) ∈B(ε)∩ S

}
= L2,∧(x, y).

One easily argues that L1 is lower semicontinuous, i.e. its lower semicontinuous hull is equal
to L1 itself, which is also equal to the lower semicontinuous hull of L2.

Next observe that

L1,∨(x, y) = inf
ε>0

sup
{
L2(x′, y′)∧L3(x′, y′) : (x′, y′) ∈B(ε)

}
= L2(x, y)∨L3(x, y) = L2,∨(x, y).

where the first equality follows from the definition of L1,∨, the fact that L1 = L2,∧ as shown
earlier and the representation for L2,∧ derived above while the second equality follows from
Equations (S2.11) and (S2.12).

The previous argument assumes (x, y) ∈ (0,∞)2. It remains to show that the semicon-
tinuous hulls of L1 also correspond to those of L2 on the axes. For this, assume now that
x > 0, y = 0. The ball B(ε) around (x,0) now becomes a “half-ball" (we intersect if with
[0,∞)2). Let (x′, y′) be a point in that ball. Then (x′, y′) is on the same ray as (x, δ), for some
δ ≥ 0 that can be made to converge to 0 as ε→ 0. We have ˙̀±

2 (x′, y′) = ˙̀±
2 (x, δ)→ ˙̀+

2 (x,0)
as ε→ 0. For the first derivative, the known bounds x ∨ y ≤ `(x, y) ≤ x + y imply that
x≤ `(x, δ)≤ x+ δ. The convexity and homogeneity properties then imply that

˙̀
1(x,0) = 1≥ ˙̀±

1 (x, δ)≥ `(x, δ)− `(0, δ)
x

≥ x− δ
x
−→ 1

as ε→ 0. By uniform boundedness of ˙̀±
1 ,

˙̀±
2 it follows easily that L1 and L2 are continuous

at (x,0) and that L1(x,0) = L2(x,0) = b(1)(x), whence those two functions have the same
semicontinuous hulls at that point.

Because ˙̀
1(0, y) was defined as the partial derivative from the right, one deals with a point

(0, y) in the same way.
Finally, note that since b(1)(0) = b(2)(0) = 0, and by uniform boundedness of ˙̀±

1 ,
˙̀±
2 the

functions L1 and L2 are both continuous and take the value 0 at (0,0). Their semicontinuous
hulls are therefore also equal at that point.

We have shown that everywhere on [0,∞)2, L1,∧ = L2,∧ and L1,∨ = L2,∨. By definition
(see Bücher, Segers and Volgushev, 2014, Proposition 2.1), this means that dhypi(L1,L2) = 0.
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LEMMA S10. Let f : [0, T ]2 → R be continuous Lebesgue-almost everywhere, g :=
(g1, . . . , gq)

> : [0, T ]2→Rq be a vector of integrable functions and assume that fn are mea-
surable and hypi-converge to f on [0, T ]2. Then

∫
gfndµL→

∫
gfdµL, where µL denotes the

Lebesgue measure on [0, T ]2.

PROOF. For every j ∈ {1, . . . , q} and M <∞, we have∫
|gjfn − gjf |dµL =

∫
|gj ||fn − f |1{|gj | ≤M}dµL +

∫
|gj ||fn − f |1{|gj |>M}dµL

≤M
∫
|fn − f |dµL + sup

(x,y)∈[0,T ]2
|fn(x, y)− f(x, y)|

∫
|gj |1{|gj |>M}dµL

≤M
∫
|fn − f |dµL

+

(
sup

(x,y)∈[0,T ]2
|fn(x, y)|+ sup

(x,y)∈[0,T ]2
|f(x, y)|

)∫
|gj |1{|gj |>M}dµL.

The first term on the right hand side converges to 0 by Proposition 2.4 of Bücher, Segers
and Volgushev (2014) and since f is assumed continuous almost everywhere. By Proposition
2.3 of that paper, sup(x,y)∈[0,T ]2 |fn(x, y)| → sup(x,y)∈[0,T ]2 |f(x, y)|. Therefore, we have

lim
n→∞

∫
|gjfn − gjf |dµL ≤ 2 sup

(x,y)∈[0,T ]2
|f(x, y)|

∫
|gj |1{|gj |>M}dµL,

which can be made arbitrarily small by choosing M large enough, since gj is integrable. The
claim follows.

LEMMA S11. Let φ : Rp → Rq , p ≤ q, have a unique, well separated zero at a point
x0 ∈ Rp and be continuously differentiable at x0 with Jacobian matrix J := Jφ(x0) of full
rank p. Let Yn be a random vector in Rq such that a−1

n Yn weakly converges to a random
vector Y , for some sequence an→ 0. Then if Xn = arg minx ‖φ(x)− Yn‖, we have

Xn − x0 = (J>J)−1J>Yn + oP (an) .

PROOF. Let hn := a−1
n (Xn − x0 − (J>J)−1J>Yn). By definition of Xn, hn is a mini-

mizer of the random function Mn : Rp→R+ defined as

Mn(h) := a−1
n

∥∥∥φ(x0 + (J>J)−1J>Yn + anh
)
− Yn

∥∥∥.
By differentiability of φ, Mn(h) is the norm of(

J(J>J)−1J> − I
)
a−1
n Yn + Jh+ o(1)

uniformly over bounded h, where I is the q× q identity matrix. The above display, seen as a
function of h, weakly converges to(

J(J>J)−1J> − I
)
Y + Jh

in (`∞(K))q , for any compact set K. The mapping f 7→ {h 7→ ‖f(h)‖} being continuous
from (`∞(K))q onto `∞(K), it follows that Mn M in `∞(K), for

M(h) :=
∥∥∥(J(J>J)−1J> − I

)
Y + Jh

∥∥∥.



24

The function M2 is strictly convex and has derivative ∂(M2(h))/∂h = 2J>Jh which,
since J has full rank, has a unique zero at h= 0. It follows thatM2, and thusM , has a unique
minimizer at the point 0. Therefore, if we can show that the sequence {hn} is uniformly
tight, Corollary 5.58 of van der Vaart (2000) will ensure that hn converges in distribution
(and hence in probability) to 0, which in turn implies the result.

It is known by Prohorov’s theorem that {a−1
n Yn} is uniformly tight. Therefore, it is suffi-

cient to establish tightness of {a−1
n (Xn − x0)}. First, define for δ > 0

ε(δ) = inf
x/∈B(x0,δ)

‖φ(x)‖,

whereB(x0, δ) denotes an open δ-ball around x0. By assumption, ε(δ)> 0 for every positive
δ. Choose δ0 > 0 small enough so that for every x ∈B(x0, δ0),

‖φ(x)− J(x− x0)‖< 1

2
‖J(x− x0)‖,

which is possible by differentiability of φ (recall that J is the Jacobian at x0). By the reverse
triangle inequality, this implies that |‖φ(x)‖−‖J(x−x0)‖| has the same upper bound. Then,
for δ ≤ δ0,

ε(δ)>
1

2
inf

x∈B(x0,δ)
‖J(x− x0)‖=

σ1(J)

2
δ,

where σ1(J), the smallest singular value of J , is positive since J has full rank.
Now, fix an arbitrary η > 0. Because the sequence {a−1

n Yn} is uniformly tight, there exists
a finite K =K(η) such that for δn :=Kan and for n large enough so that δn ≤ δ0,

P
(
‖Yn‖ ≥

ε(δn)

2

)
≤ P

(
‖Yn‖ ≥

Kσ1(J)

4
an

)
≤ η

Hence with probability at least 1−η, ‖Yn‖< ε(δn)/2. The last inequality implies two things.
First, letting φn = φ−Yn and recalling that φ(x0) = 0, we have ‖φn(x0)‖= ‖Yn‖< ε(δn)/2.
Second, for any x /∈B(x0, δn), we have ‖φ(x)‖ ≥ ε(δn) so

‖φn(x)‖= ‖φ(x)− Yn‖ ≥ |‖φ(x)‖ − ‖Yn‖|>
ε(δn)

2
.

That is, with probability at least 1 − η, Xn = arg minx ‖φn(x)‖ ∈ B(x0, δn). Since δn =
O(an) and η was arbitrary, we conclude that {a−1

n (Xn − x0)} is uniformly tight, and so is
{hn}.

S3. Proof of the claims in Examples 8, 11 and 12.

S3.1. Example 8. Recall that the random vector Z := (1−X,1− Y ) is assumed max-
stable with uniform margin and stable tail dependence function `, hence its distribution func-
tion is given by Equation (2.1). Let (x, y) ∈ (0,1]2 (the result is trivial if x or y is zero). Note
that we can without loss of generality focus on (x, y) ∈ (0,1]2 instead of general bounded
sets since any bounded set can be rescaled to be contained in [0,1]2 at the cost of absorbing
the scaling into t. The survival copula Q of (X,Y ) satisfies

Q(tx, ty) := P (X ≥ 1− tx,Y ≥ 1− ty)

= P (1−X ≤ tx,1− Y ≤ ty)

= exp{−`(− log(tx),− log(ty))}

= exp

{
log(t)`

(
1 +

log(x)

log(t)
,1 +

log(y)

log(t)

)}
,
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where we have used the homogeneity property of ` in the last line. By the assumed expansion
of the function `,

`

(
1 +

log(x)

log(t)
,1 +

log(y)

log(t)

)
= `(1,1) + ˙̀

1(1,1)
log(x)

log(t)
+ ˙̀

2(1,1)
log(y)

log(t)
+ δ(t, x, y),

where ˙̀
1 and ˙̀

2 are the right partial derivatives of ` with respect to its first and second
argument, respectively, and

δ(t, x, y).

(
log(x)

log(t)

)2

+

(
log(y)

log(t)

)2

.

This is a linear approximation of the function `; since that function is convex, it lies above
its sub gradient, so the error term δ(t, x, y) is non-negative. Plugging this in our expression
for Q(tx, ty) yields

Q(tx, ty) = t`(1,1)x
˙̀
1(1,1)y

˙̀
2(1,1)eδ

′(t,x,y),

where δ′(t, x, y) = log(t)δ(t, x, y) satisfies

log(x)2 + log(y)2

log(t)
. δ′(t, x, y)≤ 0.

Letting q(t) = t`(1,1) and c(x, y) = x
˙̀
1(1,1)y

˙̀
2(1,1), we obtain∣∣∣∣Q(tx, ty)

q(t)
− c(x, y)

∣∣∣∣= x
˙̀
1(1,1)y

˙̀
2(1,1)

(
1− eδ′(t,x,y)

)
≤ x ˙̀

1(1,1)y
˙̀
2(1,1)|δ′(t, x, y)|

.
x

˙̀
1(1,1)y

˙̀
2(1,1)(log(x)2 + log(y)2)

log(1/t)
,

where we used the fact that 0 ≤ 1 − ex ≤ |x| for all x ≤ 0. Since ˙̀
1(1,1) and ˙̀

2(1,1) are
positive it follows that this upper bound is of order 1/ log(1/t) uniformly over x, y in bounded
sets. The claim in Example 8 is proved. �

S3.2. Example 11. Now, recall the setting of Example 11. The expression for Γ(s,s) is
trivial. We shall treat the case where s and s′ are two pairs that share an element, i.e. s =
(s1, s2) and s′ = (s1, s3). One similarly deals with different combinations of s, s′, including
the case where they are disjoint.

Let ` be the stable tail dependence function of the max-stable, trivariate random vector (1−
X(s1),1−X(s2),1−X(s3)). By assumption and by the calculations above for the bivariate
case, the pairs (X(s1),X(s2)) and (X(s1),X(s3)) satisfy Condition 1(i) with scaling functions
q(s)(t) = t`(1,1,0) and q(s′)(t) = t`(1,0,1), respectively. Since those functions are invertible,
we may choose any diverging sequence m = o(log(n)2) and invert them, setting k(s)/n =
(m/n)1/`(1,1,0) and k(s′)/n = (m/n)1/`(1,0,1). In fact, we may do so with every pair and
obtain, as claimed, a universal sequence m.

Without loss of generality, let us assume that `(1,1,0)≤ `(1,0,1) so that k(s) ≤ k(s′). Let
tn = k(s)/n and α = `(1,1,0)/`(1,0,1) ∈ (0,1]; observe that k(s′)/n = tαn . By definition,
for fixed x1, x2 ∈ (0,1]2 (we can restrict our attention to this setting by similar arguments as
in the bivariate case), we have

(S3.1) Γ(s,s′)(x1, x2) = lim
n→∞

n

m
P
(

1−X(s1) ≤ tnx,1−X(s2) ≤ tny,1−X(s3) ≤ tαnz
)
,
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where x is equal to x1
1 ∧ x1

2 if α = 1 and to x1
1 otherwise, y = x1

2 and z = x2
2. Using the

same reasoning as in the bivariate case above (including the homogeneity property of `), the
probability in Equation (S3.1) can be written as

exp{−`(− log(tnx),− log(tny),− log(tαnz))}

= exp

{
log(tn)`

(
1 +

log(x)

log(tn)
,1 +

log(y)

log(tn)
, α+

log(z)

log(tn)

)}
= t`(1,1,α)

n exp

{
log(tn)

[
`

(
1 +

log(x)

log(tn)
,1 +

log(y)

log(tn)
, α+

log(z)

log(tn)

)
− `(1,1, α)

]}
.

Eventually, log(tn) is negative, which makes the difference in the square brackets non-
negative by monotonicity of `. This eventually upper bounds the exponential by 1 and the
entire expression by t`(1,1,α)

n , for any x, y, z ∈ (0,1]. Considering Equation (S3.1), it follows
that for every fixed x1, x2 ∈ (0,1]2,

Γ(s,s′)(x1, x2)≤ lim
n→∞

n

m
t`(1,1,α)
n = lim

n→∞

(m
n

) `(1,1,α)

`(1,1,0)
−1

= 0,

since the assumption that ` is component-wise strictly increasing means that `(1,1, α) >
`(1,1,0). �

S3.3. Example 12. We present here the main ideas, as most of the precise calculations
are similar to the preceding section. As before, let X(j) = Y (uj), and write Z(j) and Z ′(j)

for Z(uj) and Z ′(uj). Consider a pair s := (s1, s2) and let F be the distribution function of
the unit Fréchet distribution. Recall that X(j) = max{aZ(j), (1− a)Z ′(j)}. We have for t ↓ 0

P
(
F (X(s1))≥ 1− tx,F (X(s2))≥ 1− ty

)
= P

(
F (Z(s1))1/a ∨ F (Z ′(s1))1/(1−a) ≥ 1− tx,F (Z(s2))1/a ∨ F (Z ′(s2))1/(1−a) ≥ 1− ty

)
= P

(
F (Z(s1))≥ (1− tx)a, F (Z(s2))≥ (1− ty)a

)

+ P
(
F (Z ′(s1))≥ (1− tx)1−a, F (Z ′(s2))≥ (1− ty)1−a

)
+O(t2),

(S3.2)

where the termO(t2) is uniform over bounded x, y. Note that (1−tx)a = 1−t(ax+O(tx2)).
The first term of Equation (S3.2) is equal to

aχZ,(s)t(x+ y− `Z,(s)(x, y)) +O(t2)

uniformly over bounded x, y, where χZ,(s) and `Z,(s) are the extremal dependence coeffi-
cient and stable tail dependence function, respectively, corresponding to the random vector
(Z(s1),Z(s2)). From previous calculations, the second term of Equation (S3.2) is equal to

((1− a)t)`
Z′,(s)(1,1)x

˙̀Z′,(s)
1 (1,1)y

˙̀Z′,(s)
2 (1,1) +O

(
t`
Z′,(s)(1,1)/ log(1/t)

)
,

uniformly over bounded x, y, where `Z
′,(s) is the stable tail dependence function correspond-

ing to the max-stable random vector (1/Z ′(s1),1/Z ′(s2)). It follows that Condition 1(i) is
satisfied for every pair of locations; depending on whether (Z(s1),Z(s2)) is dependent or
independent, either the first of the second of the last two expressions dominates. This de-
termines that q(s)(t) is proportional to t for asymptotically dependent pairs and to t1/η

′(s)

for asymptotically independent ones, where η′(s) is the coefficient of tail dependence of
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(1/Z ′(s1),1/Z ′(s2)), satisfying 1< 1/η′(s) < 2 by assumption — for any inverted max-stable
distribution, its coefficient of tail dependence η is always in [1/2,1), and can only be equal
to 1/2 under perfect independence. The coefficient of tail dependence η(s) of (X(s1),X(s2))
is equal to 1 if χZ,(s) > 0 and to η′(s) otherwise.

We now show how to obtain an expression for the functions Γ(s,s′). First, since the func-
tions q(s) are proportional to simple powers, for a sufficiently slow intermediate sequence
m, we let k(s)/n be proportional to m/n if s is an asymptotically dependent pair and to
(m/n)η

(s)

otherwise, so that all m(s) are equal to m.
The case s = s′ follows trivially from the previous developments; Γ(s,s) can be derived

from c(s). Next consider the case where s, s′ share one element, i.e. s = (s1, s2) and s′ =
(s1, s3). Letting tn = k(s)/n and t′n = k(s′)/n, assume without loss of generality that t′n . tn.
The probability of interest is of the form

P
(
F (X(s1))≥ 1− (tnx∧ t′nx′), F (X(s2))≥ 1− tny,F (X(s3))≥ 1− t′nz

)
= P

(
F (Z(s1))≥ (1− (tnx∧ t′nx′))a, F (Z(s2))≥ (1− tny)a, F (Z(s3))≥ (1− t′nz)a

)
+ P

(
F (Z ′(s1))≥ (1− (tnx∧ t′nx′))1−a, F (Z ′(s2))≥ (1− tny)1−a,

F (Z ′(s3))≥ (1− t′nz)1−a
)

+O(t2n).

Indeed, the third term above is the probability of a certain event that requires at least one
of the Z and one of the Z ′ to be large, which has probability at most O(t2n) since Z and
Z ′ are assumed independent (recall that we assumed t′n = O(tn)). We note that the term in
front of this probability in the definition of Γ(s,s′) is equal to q(s)(tn)−1 = t

−1/η(s)

n . However
t2n = o(t

1/η(s)

n ) since η(s) > 1/2, and the second probability above is also o(t1/η
(s)

n ), following
the calculations for Example 11. Therefore, in this case, Γ(s,s′)((x, y), (x′, z)) is equal to the
limit

lim
n→∞

t−1/η(s)

n P
(
F (Z(s1))≥ (1− (tnx∧ t′nx′))a,

F (Z(s2))≥ (1− tny)a, F (Z(s3))≥ (1− t′nz)a
)

= lim
n→∞

t−1/η(s)

n P
(
F (Z(s1))≥ 1− a(tnx∧ t′nx′),

F (Z(s2))≥ 1− atny,F (Z(s3))≥ 1− at′nz
)

which is non-zero if and only if (Z(s1),Z(s2),Z(s3)) is fully dependent (i.e., it contains no
pairwise independence).

For the case where the pairs s= (s1, s2) and s′ = (s3, s4) are disjoint, let tn = k(s)/n and
t′n = k(s′)/n and assume as before that t′n . tn. By similar arguments as above, one obtains
that Γ(s,s′)((x, y), (x′, y′)) is equal to the limit

lim
n→∞

t−1/η(s)

n P
(
F (Z(s1))≥ 1− atnx,F (Z(s2))≥ 1− atny,

F (Z(s3))≥ 1− at′nx′, F (Z(s4))≥ 1− at′ny′
)
,

which is non-zero if and only if (Z(s1),Z(s2),Z(s3),Z(s4)) has no independent pairs.
Using the same ideas and after straightforward computations, one may calculate the limits

Γ(s,s′,j), for s′ ∈ PD . First, consider the case where s = (s1, s2) and s′j = s1, that is the
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element s′j is in the pair s. Defining tn and t′n as above, we still have t′n . tn since s′ is an
asymptotically dependent pair. Then Γ(s,s′,j)((x, y), (x′, y′)) is equal to

χZ,(s
′) lim
n→∞

t−1/η(s)

n P
(
F (Z(s1))≥ 1− a(tnx∧ t′nx′), F (Z(s2))≥ 1− atny

)
,

which is non-zero if and only if (Z(s1),Z(s2)) is dependent. Now if s3 := s′j is not an element
of s, Γ(s,s′,j)((x, y), (x′, y′)) becomes

χZ,(s
′) lim
n→∞

t−1/η(s)

n P
(
F (Z(s1))≥ 1− atnx,F (Z(s2))≥ 1− atny,F (Z(s3))≥ 1− at′nx′

)
,

which is non-zero if and only if (Z(s1),Z(s2),Z(s3)) is fully dependent.
Finally, for s, s′ ∈ PD , again letting tn = k(s)/n and t′n = k(s′)/n, note that this time t′n/tn

is constant. Without loss of generality, let j = j′ = 1. Then Γ(s,j,s′,j′)((x, y), (x′, y′)) is equal
to

χZ,(s)χZ,(s
′) lim
n→∞

t−1
n P

(
F (Z(s1))≥ 1− tnx,F (Z(s′1))≥ 1− t′ny′

)
,

which is non-zero if and only if (Z(s1),Z(s′1)) is dependent. �

S4. Proof of the claims in Example 9. The multiplicative constant appearing in the
scaling function q, as a function of λ, is given by

(S4.1) Kλ =



21−λ
2−λ , λ ∈ (0,1)

2, λ= 1(
1− 1

λ

)λ−1 2(λ−1)
λ(2−λ) , λ ∈ (1,2)

1
2 , λ= 2
(1− 1

λ)
2

1− 2

λ

, λ ∈ (2,∞)

;

it can be deduced from the proof.
The argument must be separated in two cases depending on whether λ= 1.

S4.1. The case λ 6= 1. For now, assume that αR 6= αW . Let F̄R denote the survival func-
tion of R. Then F̄R(x) = x−αR for x > 1, and F̄R(x) = 1 for x≤ 1. The first step in calcula-
tiong Q is to find an expression for the survival function F̄ of X (and equivalently of Y ) and
its inverse. We have, for x≥ 1,

F̄ (x) = P (RW1 > x)

= P
(
R>

x

W1

)
= E

[
F̄R

(
x

W1

)]
= P (W1 > x) +

∫ x

1

(w
x

)αR αW
wαW+1

dw

= x−αW + αWx
−αR x

αR−αW − 1

αR − αW

=
αR

αR − αW
x−αW − αW

αR − αW
x−αR

=
α∨

α∨ − α∧
x−α∧

(
1− α∧

α∨ − α∧
xα∧−α∨

)
,
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where α∧ and α∨ denote the smallest and the largest of the two α’s, respectively. Although
not easily invertible, this function is close to α∨

α∨−α∧x
−α∧ , which has an analytical inverse.

We now argue that this inverse is close to that of F̄ . First, for any X ∈ (1,∞), we have for
x ∈ [X,∞)

α∨
α∨ − α∧

x−α∧
(

1− α∧
α∨ − α∧

Xα∧−α∨
)

︸ ︷︷ ︸
f1(x)

≤ F̄ (x)≤ α∨
α∨ − α∧

x−α∧︸ ︷︷ ︸
f2(x)

.

Now note that for two decreasing, invertible functions g1 and g2, g1 ≤ g2 is equivalent to
g−1

1 ≤ g−1
2 . This means that as soon as y ≤ f1(X), f−1

1 (y) ≤ F̄−1(y) ≤ f−1
2 (y). In other

words, for such y,(
1− α∧

α∨ − α∧
Xα∧−α∨

)1/α∧ ( α∨
α∨ − α∧

)1/α∧

y−1/α∧ ≤ F̄−1(y)≤
(

α∨
α∨ − α∧

)1/α∧

y−1/α∧ .

Because these inequalities are true as soon as y ≤ f1(X), they are true if y = f1(X). If

y is small enough, choosing X =
(

1
2

α∨
α∨−α∧

)1/α∧
y−1/α∧ is sufficient to have y ≤ f1(X).

Therefore, if y is small enough, the first inequality in the last display becomes

F̄−1(y)≥
(

1−O
(
y
α∨
α∧
−1
))( α∨

α∨ − α∧

)1/α∧

y−1/α∧ .

Combining this with the upper bound (the second inequality) yields

(S4.2) F̄−1(y) = (1 +O (yτ ))

(
α∨

α∨ − α∧

)1/α∧

y−1/α∧ ,

where τ = α∨
α∧
− 1.

The copula Q can now be expressed as

Q(tx, ty) = P
(
X ≥ F̄−1(tx), Y ≥ F̄−1(ty)

)
= P

(
RW1 ≥ F̄−1(tx),RW2 ≥ F̄−1(ty)

)
= P (R≥ Z) = E

[
F̄R(Z)

]
,

where

Z := Z(tx, ty) =
F̄−1(tx)

W1
∨ F̄

−1(ty)

W2
.

Recalling the definition of F̄R, we have

Q(tx, ty) = P (Z ≤ 1) +E
[
Z−αR ;Z > 1

]
= P (Z ≤ 1) +

∫ ∞
0

P
(
Z−αR > a,Z > 1

)
da

= P (Z ≤ 1) +

∫ ∞
0

P
(

1<Z ≤ a−1/αR
)
da

= P (Z ≤ 1) +

∫ 1

0
P
(

1<Z ≤ a−1/αR
)
da

= P (Z ≤ 1) +

∫ 1

0

(
P
(
Z ≤ a−1/αR

)
− P (Z ≤ 1)

)
da

=

∫ 1

0
P
(
Z ≤ a−1/αR

)
da.
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In order to compute the previous integral, we need to derive the CDF of Z . From the
definition of Z and by independence of W1 and W2, it is clear that, for any z > 0,

P (Z ≤ z) = P
(
W1 ≥

F̄−1(tx)

z

)
P
(
W2 ≥

F̄−1(ty)

z

)
.

From now on, assume without loss of generality that x≥ y since c(x, y) = c(y,x) (because
the random variables X and Y are exchangeable). Then F̄−1(tx)≤ F̄−1(ty). The previous
probability can take 3 different forms:

P (Z ≤ z) =


(
F̄−1(tx)F̄−1(ty)

)−αW z2αW , if z ≤ F̄−1(tx)(
F̄−1(ty)

)−αW zαW , if F̄−1(tx)< z ≤ F̄−1(ty)

1, if z > F̄−1(ty)

.

When substituting z = a−1/αR , for a ∈ (0,1), notice that we are in the three preceding
cases, respectively, when

a≥
(
F̄−1(tx)

)−αR(
F̄−1(ty)

)−αR ≤ a < (F̄−1(tx)
)−αR

a <
(
F̄−1(ty)

)−αR .

This allows us to write

Q(tx, ty) =

∫ (F̄−1(ty))
−αR

0
da+

(
F̄−1(ty)

)−αW ∫ (F̄−1(tx))
−αR

(F̄−1(ty))
−αR

a
−αW
αR da

+
(
F̄−1(tx)F̄−1(ty)

)−αW ∫ 1

(F̄−1(tx))
−αR

a
−2

αW
αR da.(S4.3)

Since we only need Equation (3.1) to hold uniformly over a sphere, we may assume that
y ≤ x≤ 1. Then, Equation (S4.2) yields

F̄−1(tx) = (1 +O(tτ ))

(
α∨

α∨ − α∧

)1/α∧

(tx)−1/α∧

and the same for F̄−1(ty). Moreover, the term O(tτ ) is uniform over all (x, y) ∈ [0,1]2. The
first term in Equation (S4.3) is then equal to(

F̄−1(ty)
)−αR

= (1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧

t
αR
α∧ y

αR
α∧ =:Q(1)(tx, ty),

the second one is equal to

(
F̄−1(ty)

)−αW a
1−αW

αR

1− αW
αR

∣∣∣∣∣
(F̄−1(tx))

−αR

a=(F̄−1(ty))
−αR

=
1

1− αW
αR

(
F̄−1(ty)

)−αW (
F̄−1(tx)−(αR−αW ) − F̄−1(ty)−(αR−αW )

)

= (1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧

1− αW
αR

t
αR
α∧ y

αW
α∧

(
x
αR−αW
α∧ − y

αR−αW
α∧

)
=:Q(2)(tx, ty)
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and finally the third one is equal to

(
F̄−1(tx)F̄−1(ty)

)−αW a
1−2

αW
αR

1− 2αWαR

∣∣∣∣∣
1

a=(F̄−1(tx))
−αR

=
1

1− 2αWαR

(
F̄−1(tx)F̄−1(ty)

)−αW (
1−

(
F̄−1(tx)

)2αW−αR)

= (1 +O(tτ ))

(
1− α∧

α∨

)2
αW
α∧

1− 2αWαR
t2

αW
α∧ (xy)

αW
α∧

(
1−

(
1− α∧

α∨

)αR−2αW
α∧

(tx)
αR−2αW

α∧

)
=:Q(3a)(tx, ty)

in the case where αR 6= 2αW , and if αR = 2αW , it is equal to

−
(
F̄−1(tx)F̄−1(ty)

)−αW
log
((
F̄−1(tx)

)−αR)
= (1 +O(tτ ))

(
1− α∧

α∨

)2
αW
α∧

t2
αW
α∧ (xy)

αW
α∧

×

(
− log

(
(1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧

)
+
αR
α∧

(log(1/x) + log(1/t))

)

=
1

2
t2 log(1/t)xy+O(t2)

=:Q(3b)(tx, ty),

where the term O(t2) is uniform over (x, y) ∈ [0,1]2. We now divide the possible values
of λ = αR/αW in four ranges and determine which of the three terms Q(1), Q(2) or Q(3)

dominates.

S4.1.1. λ ∈ (0,1). This is the case where we obtain asymptotic dependence. All three
terms are of the order of t, so they all matter. In this case, α∧ = αR, α∨ = αW and τ =
1/λ− 1. Therefore,

Q(1)(tx, ty) = (1 +O(tτ ))

(
1− αR

αW

)
ty = (1− λ)ty+O

(
t1+τ

)
,

Q(2)(tx, ty) = (1 +O(tτ ))
1− αR

αW

1− αW
αR

ty
αW
αR

(
x

1−αW
αR − y1−αW

αR

)
= (1 +O(tτ ))

αR
αW

t
(
y− x1−αW

αR y
αW
αR

)
= λt

(
y− x1−1/λy1/λ

)
+O

(
t1+τ

)
,

Q(3a)(tx, ty) = (1 +O(tτ ))

(
1− αR

αW

)2
αW
αR

2αWαR − 1
t
2
αW
αR (xy)

αW
αR

((
1− αR

αW

)1−2
αW
αR

(tx)
1−2

αW
αR − 1

)

= (1 +O(tτ ))
1− αR

αW

2αWαR − 1
tx

1−αW
αR y

αW
αR +O

(
t
2
αW
αR

)
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= λ
1− λ
2− λ

tx1−1/λy1/λ +O
(
t1+τ + t2/λ

)
= λ

1− λ
2− λ

tx1−1/λy1/λ +O
(
t1+τ

)
,

where in the last line we have used 1 + τ = α∨/α∧ = 1/λ < 2/λ. Therefore in this case we
get

Q(tx, ty) =Q(1)(tx, ty) +Q(2)(tx, ty) +Q(3a)(tx, ty)

= (1− λ)ty+ λt
(
y− x1−1/λy1/λ

)
+ λ

1− λ
2− λ

tx1−1/λy1/λ +O
(
t1+τ

)
= t

(
y+

(
−λ+ λ

1− λ
2− λ

)
x1−1/λy1/λ

)
+O

(
t1+τ

)
= t

(
y− λ

2− λ
x1−1/λy1/λ

)
+O

(
t1+τ

)
.

S4.1.2. λ ∈ (1,2). Here again, all three terms are of the order of tλ so they all matter.
Note that here and in the next two cases, α∧ = αW , α∨ = αR and τ = λ−1. Through similar
calculations as before, we obtain this time

Q(1)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

) αR
αW

t
αR
αW y

αR
αW =

(
1− 1

λ

)λ
tλyλ +O

(
tλ+τ

)
,

Q(2)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

) αR
αW

1− αW
αR

t
αR
αW y

(
x
αR
αW
−1 − y

αR
αW
−1
)

=

(
1− 1

λ

)λ−1

tλ
(
xλ−1y− yλ

)
+O

(
tλ+τ

)
,

Q(3a)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

)2

2αWαR − 1
t2xy

((
1− αW

αR

) αR
αW
−2

(tx)
αR
αW
−2 − 1

)

= (1 +O(tτ ))

(
1− 1

λ

)2
2
λ − 1

t2xy

((
1− 1

λ

)λ−2

(tx)λ−2 − 1

)

= (1 +O(tτ ))

(
1− 1

λ

)λ
2
λ − 1

tλxλ−1y+O
(
t2
)

= λ

(
1− 1

λ

)λ
2− λ

tλxλ−1y+O
(
tλ+τ + t2

)
= λ

(
1− 1

λ

)λ
2− λ

tλxλ−1y+O
(
t(2λ−1)∧2

)
.

Therefore, Q can be calculated as

Q(tx, ty) =Q(1)(tx, ty) +Q(2)(tx, ty) +Q(3a)(tx, ty)

=

(
1− 1

λ

)λ−1

tλ

((
1− 1

λ

)
yλ + xλ−1y− yλ + λ

1− 1
λ

2− λ
xλ−1y

)
+O

(
t(2λ−1)∧2

)

=

(
1− 1

λ

)λ−1

tλ

(
− 1

λ
yλ +

(
1 + λ

1− 1
λ

2− λ

)
xλ−1y

)
+O

(
t(2λ−1)∧2

)
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=

(
1− 1

λ

)λ−1

tλ
(

1

2− λ
xλ−1y− 1

λ
yλ
)

+O
(
t(2λ−1)∧2

)
.

S4.1.3. λ = 2. In this case, αR/α∧ = 2, so we easily see that both Q(1)(tx, ty) and
Q(2)(tx, ty) are O(t2). Because the term Q(3b) is of the order of t2 log(1/t), it dominates the
preceding two by a factor of log(1/t). Therefore,

Q(tx, ty) =Q(3b)(tx, ty) +O
(
t2
)

=
1

2
t2 log(1/t)xy+O

(
t2
)
.

S4.1.4. λ ∈ (2,∞). Once again, the terms Q(1) and Q(2) are dominated by the third
term; they are both of the order of tλ, whereas the third term is of the order of t2. Therefore,

Q(tx, ty) =Q(3a)(tx, ty) +O
(
t
αR
αW

)

= (1 +O(tτ ))

(
1− αW

αR

)2

1− 2αWαR
t2xy

(
1−

(
1− αW

αR

) αR
αW
−2

(tx)
αR
αW
−2

)
+O

(
t
αR
αW

)

= (1 +O(tτ ))

(
1− 1

λ

)2
1− 2

λ

t2xy+O
(
tλ
)

=

(
1− 1

λ

)2
1− 2

λ

t2xy+O
(
t(2+τ)∧λ

)
=

(
1− 1

λ

)2
1− 2

λ

t2xy+O
(
tλ
)
,

because, in the last line, 2 + τ = λ+ 1> λ.

S4.2. The case λ= 1. From now on, we assume that αR = αW = α. That is, R,W1,W2

are iid with a Pareto (α) distribution. Like before, we denote by F̄R and F̄ the survival func-
tions of R and of X (and equivalently Y ), respectively. As before, we first find an expression
for F̄ . For any x≥ 1,

F̄ (x) = P (RW1 > x)

= P
(
R>

x

W1

)
= E

[
F̄R

(
x

W1

)]
= P (W1 > x) +

∫ x

1

(w
x

)α α

wα+1
dw

= x−α + αx−α
∫ x

1

dw

w

= x−α (1 + α log(x)) .

The inverse of this function is given by

F̄−1(y) =

(
−W−1(−y/e)

y

)1/α

,
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where W−1 denotes the lower branch of the Lambert W function; for y ∈ [−e−1,0), W−1(y)
denotes the only solution in x ∈ (−∞,−1] of the equation y = xex. Indeed, it can be seen by
a simple plug-in argument that for any y ∈ (0,1],

F̄

((
−W−1(−y/e)

y

)1/α
)

= y.

Repeating the steps leading to Equation (S4.3), we obtain the following similar integral
representation for Q:

Q(tx, ty) =

∫ (F̄−1(ty))
−α

0
da+

(
F̄−1(ty)

)−α ∫ (F̄−1(tx))
−α

(F̄−1(ty))
−α

a−1da

+
(
F̄−1(tx)F̄−1(ty)

)−α ∫ 1

(F̄−1(tx))
−α
a−2da

=
(
F̄−1(ty)

)−α
+
(
F̄−1(ty)

)−α
log

((
F̄−1(tx)

)−α(
F̄−1(ty)

)−α
)

+
(
F̄−1(tx)F̄−1(ty)

)−α ((
F̄−1(tx)

)α − 1
)

=
(
F̄−1(ty)

)−α(
2 + log

((
F̄−1(tx)

)−α(
F̄−1(ty)

)−α
))
−
(
F̄−1(tx)F̄−1(ty)

)−α
.

The last term in this expression is negligible, compared to the first one, by a factor of
at least

(
F̄−1(ty)

)−α, which (we shall see) is small enough to be absorbed by the term
O(q1(t)).

Now, by Corless et al. (1996), Section 4, we may obtain the following expansion of(
F̄−1(t)

)−α as t→ 0:(
F̄−1(t)

)−α
=

t

−W−1(−t/e)

=
t

log(e/t) + log log(e/t) + o(1)

=
t

log(1/t) + log log(1/t) +O(1)

=

(
1 +O

(
1

log(1/t)

))
t

log(1/t) + log log(1/t)
.

Note that, since we are only interested in (x, y) ∈ (0,1]2 and since we assume y ≤ x,
1/ log(1/ty)≤ 1/ log(1/tx)≤ 1/ log(1/t). Plugging the expansion in our expression for Q
yields

Q(tx, ty) =

{
1 +O

(
1

log(1/t)

)}
ty

log(1/ty) + log log(1/ty)

×

2 + log


{

1 +O
(

1
log(1/t)

)}
tx

log(1/tx)+log log(1/tx){
1 +O

(
1

log(1/t)

)}
ty

log(1/ty)+log log(1/ty)


+O

((
t

log(1/t) + log log(1/t)

)2
)
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=

{
1 +O

(
1

log(1/t)

)}
ty

log(1/t) + log log(1/t) +O(log(1/y))

×
(

2 + log

({
1 +O

(
1

log(1/t)

)}
x

y

log(1/t) + log log(1/t) +O(log(1/y))

log(1/t) + log log(1/t) +O(log(1/x))

))(S4.4)

+O

((
t

log(1/t) + log log(1/t)

)2
)

Note that the first term thereof can be written as
ty

log(1/t) + log log(1/t) +O(log(1/y))
=

ty

log(1/t) + log log(1/t)

{
1 +O

(
log(1/y)

log(1/t)

)}
=

ty

log(1/t) + log log(1/t)

{
1 +O

(
1

log(1/t)

)}
because as y approaches 0, the term log(1/y) gets absorbed by the term y on the numerator.
Furthermore,

x

y

log(1/t) + log log(1/t) +O(log(1/y))

log(1/t) + log log(1/t) +O(log(1/x))
=
x

y

{
1 +O

(
log(1/x) + log(1/y)

log(1/t)

)}
=
x

y

{
1 +O

(
log(1/y)

log(1/t)

)}
.

Thus the log term in Equation (S4.4) equals

log

(
x

y
+O

(
x

y

log(1/y)

log(1/t)

))
= log

(
x

y

)
+O

 x
y

log(1/y)
log(1/t)

x/y

= log

(
x

y

)
+O

(
log(1/y)

log(1/t)

)
,

where we have used the fact that, for any a≥ 1 and b≥ 0, log(a+ b)≤ log(a) + b/a (recall
that x/y ≥ 1). Piecing everything together, Equation (S4.4) may be rewritten as

Q(tx, ty) =
ty

log(1/t) + log log(1/t)

(
2 + log

(
x

y

)
+O

(
log(1/y)

log(1/t)

)){
1 +O

(
1

log(1/t)

)}
=

ty

log(1/t) + log log(1/t)

(
2 + log

(
x

y

)){
1 +O

(
1

log(1/t)

)}
,

once again because the term log(1/y) is absorbed by y as y approaches 0. Recalling that we
assumed y ≤ x, the claim follows. �

S5. A few words on the computational complexity of the method in spatial problems.
Both estimators we propose in the spatial setting (defined in Equations (3.8) and (3.9)) essen-
tially rely on the evaluation of bivariate functions and as such are much faster than methods
based on full likelihood (especially if the number of locations is large). A comparison with
pairwise likelihood depends on the cost of likelihood evaluations in the particular model un-
der consideration and the type of weight functions that we choose. For the sake of brevity
we will focus on the estimator ϑ̂ from Equation (3.8); similar arguments apply to ϑ̃ from
Equation (3.9) with obvious modifications.

Typically, we expect that ϑ̂ can be computed faster than a pairwise likelihood-based esti-
mator. The main computational burden arises when computing the pairwise empirical inte-
grals

∫
g(x, y)Q̂(s)(kx/n,ky/n)dxdy and the corresponding estimators θ̂(s)

n . In computing
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those estimators, when finding the minimizer of∥∥∥∫ g(x, y)Q̂(s)(kx/n,ky/n)dxdy− ζ
∫
g(x, y)cθ(x, y)dxdy

∥∥∥
through numerical optimization, only population level integrals

∫
g(x, y)cθ(x, y)dxdy need

to be re-computed for each optimization step. For specific models (such as the inverted
Brown–Resnick process considered in our application) those integrals have simple analytic
expressions, which additionally speeds up the computation. In comparison, the likelihood of
a bivariate extreme value model may be substantially more costly to compute, and it needs to
be evaluated at every optimization step.

The above procedure only needs to be completed once and can easily be parallelized by
considering pairs independently. Once the estimators θ̂(s)

n are available, the objective function
in Equation (3.8) only depends on evaluating the low-dimensional functions h(s). Again, in
our example those are very simple analytic functions.

To give a rough idea of the computation times for the proposed methods in a specific
example, we report below average computation times for the spatial simulation study in Sec-
tion 5.2, with d = 40 locations (corresponding to 780 pairs), n = 5000 and a few different
values of m. All computation times are for computing both spatial estimators simultaneously
(but the time to compute only one is not so different since most of the “pairwise" steps lead-
ing to each estimator are the same). The values given are averaged based on 100 repetitions
and the values in parenthesis are standard deviations. All computations were executed on
a personal laptop with a 2.5GHz Intel Core i5-7200U processor without utilizing parallel
computation.

m 25 100 250 500 1000
time (seconds) 9.6 (0.6) 9.5 (0.3) 9.6 (0.4) 9.8 (0.3) 9.8 (0.3)

S6. Additional simulation results. This section contains additional simulation results
not included in Section 5.

S6.1. Bivariate distributions. The following scatter plots represent data from each of the
three bivariate models M1–M3 found in Section 5.1. For illustration purposes, there is no
additive noise and the marginals are transformed to unit exponential.

0 2 4 6 8

0
1

2
3

4
5

6

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

0 2 4 6 8

0
2

4
6

FIG S1. Samples of 1 000 data points from the inverted Hüsler–Reiss distribution with parameter θ equal to 0.6,
0.75 and 0.9, from left to right. The marginal distributions are scaled to unit exponential.



RANK-BASED ESTIMATION UNDER ASYMPTOTIC DEPENDENCE AND INDEPENDENCE 37

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

0 2 4 6 8

0
1

2
3

4
5

6

FIG S2. Samples of 1 000 data points from the inverted asymmetric logistic distribution with parameter θ equal
to (0.72,0.72), (0.75,0.91) and (0.91,0.91), from left to right. The marginal distributions are unit exponential.
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FIG S3. Samples of 1 000 data points from the Pareto random scale model with parameter λ equal to 0.4, 1 and
1.6, from left to right. The marginal distributions are approximately unit exponential.

S6.1.1. Sensitivity with respect to the weight function. Recall the weight function in
Equation (5.1) that is used throughout the paper. It is composed of the weighted indi-
cator functions of the five rectangles I1 := [0,1]2, I2 := [0,2]2, I3 := [1/2,3/2]2, I4 :=
[0,1]× [0,3] and I5 := [0,3]× [0,1]. As explained in Section 5.1, those rectangles are chosen
specifically to ensure identifiability in every model, so that a unique weight function may be
used for all simulations.

We now consider different subsets of the five rectangles above and repeat the simulation
study with each of the associated lower dimensional weight functions. Precisely, we define
g(1) as the function g in Equation (5.1) and by the same principle we construct g(2), . . . , g(7),
using the rectangles in Table S1.

Weight fct. g(1) g(2) g(3) g(4) g(5) g(6) g(7)

Rectangles I1, I2, I3, I4, I5 I1, I2 I1, I3 I1, I4, I5 I1, I2, I3 I1, I2, I4, I5 I1, I3, I4, I5

TABLE S1
Rectangles used to construct each weight function.

We repeat the simulation study from Section 5.1; 1 000 data sets of size n = 5 000 are
drawn from each of the three models, with the same noise mechanism as before, and from
each data set seven estimators are computed based on the seven weight functions. We use
the values k that were deemed good previously, that is 800 for the two inverted max-stable
models (M1 and M2) and 400 for the Pareto random scale model (M3). For each model and
each parameter value, we compare the weight functions based on the estimated RMSE of the
M-estimator in Figure S4.

In the inverted Hüsler–Reiss model, the parameter has a one-to-one relation with the coef-
ficient of homogeneity 1/η of c. In order to identify that coefficient, it is sufficient to compare
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the integral of c over the rectangles I1 and I2. It can moreover be deduced from the develop-
ments in Section S3 that in this model, the bias arising from the pre-asymptotic approxima-
tion of c is largest around the axes. Thus, as can be observed below, adding the non required
rectangles I4 and I5, which contain a large portion of the axes, adds bias to the estimator.
The best strategy for this model seems to be using I1, I2 and possibly I3.

In contrast, the parameter in the inverted asymmetric logistic model is not identifiable
if the rectangles used are all symmetric, since then (θ1, θ2) cannot be distinguished from
(θ2, θ1). Therefore the estimator is not uniquely defined when neither I4 nor I5 is used, so
the functions g(2), g(3) and g(5) were not included. It is to be noted that g(4) does not include
either of I2 and I3, and as such is not able to estimate the homogeneity coefficient θ1 + θ2

well, even if it is able to recover the asymmetry. This explains the monotonic behavior of
the error with respect to θ1 + θ2. The other three weight functions perform similarly to each
other.

Finally, in the Pareto random scale model, the weight function g(2) only estimates the
homogeneity and as such, it is unable to distinguish the parameters in the range (0,1), corre-
sponding to asymptotic dependence. It was thus ignored. Among the other functions, the ones
that use I4 and I5 (g(1), g(4), g(6), g(7)) all have a similar performance whereas the other two
(g(3) and g(5)) incur a noticeably larger error. It seems that those rectangles help estimating
characteristics that are strongly different from the coefficient of homogeneity, which explains
why they significantly reduce the RMSE under asymptotic dependence (λ < 1).
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FIG S4. RMSE of the M-estimator in the models M1–M3 as a function of the parameter, based on 1 000 data sets
of size n= 5 000, k = 800 (for M1 and M2) and k = 400 (for M3). Colors represent the seven weight functions
from Table S1.

S6.2. Spatial models. Figure S5 shows the distribution of the distances of all the pairs
that are used in the analysis in Section 5.2. Figures S6 and S7 present the same results as in
Section 5.2 when the estimator (3.9) is used instead of (3.8).



40

Distance (units of latitude)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5
0

20
40

60
80

10
0

12
0

FIG S5. Distribution of the distances ∆(s) for the 780 pairs used.

100 200 300 400 500

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

m

B
ia

s 
an

d 
R

M
S

E

100 200 300 400 500

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

m

B
ia

s 
an

d 
R

M
S

E

100 200 300 400 5000.
02

6
0.

03
0

0.
03

4
0.

03
8

m

M
ea

n 
su

pr
em

um
 e

rr
or

FIG S6. Left and middle columns: Bias (solid line) and RMSE (dotted line) of the estimators of the two spatial pa-
rameters α (left) and β (middle) as a function ofm. Right: Mean of the supremum error sup0≤∆≤3 |θ(∆; α̂, β̂)−
θ(∆;α,β)| as a function of m.

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

∆

E
st

im
at

or
s 

of
 θ

(∆
)

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.5 1 1.5 2 2.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

∆

θ(
∆;

 α̂
,β̂

)

FIG S7. Left panel: Estimators of θ(∆) for 5 different distances. For each distance, bivariate M-estimator θ̂(s)
n

(green) and spatial estimator θ(∆(s); α̂, β̂) (blue) based on the d= 40 locations. Right panel: 50 sampled curves
θ(·; α̂, β̂). Blue represents the true curve θ(·;α,β).



RANK-BASED ESTIMATION UNDER ASYMPTOTIC DEPENDENCE AND INDEPENDENCE 41

REFERENCES

BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1987). Regular Variation. Cambridge University Press.
BÜCHER, A., SEGERS, J. and VOLGUSHEV, S. (2014). When Uniform Weak Convergence Fails: Empirical

Processes for Dependence Functions and Residuals via Epi- and Hypographs. Ann. Stat. 42 1598-1634.
CORLESS, R. M., GONNET, G. H., HARE, D. E., JEFFREY, D. J. and KNUTH, D. E. (1996). On the LambertW

function. Advances in Computational mathematics 5 329–359.
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