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Multivariate peaks-over-threshold

• X ∈ [0,∞)d has unit Pareto marginals

• Tail dependence of X is often thought of as the dependence structure of X ,

assuming ∥X∥∞ is large

• Formally, if {
qX

∣∣ ∥X∥∞ > q−1
}
⇝ Y , q → 0,

the distribution of Y is called a multivariate Pareto (MP) distribution

• X is in the domain of attraction (DA) of Y
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Multivariate Pareto distributions

• Although MP are the main focus when doing multivariate peaks-over-threshold

inference, they are related to the well known property of max-stability

• If X is in the MDA of a max-stable distribution Z , then X is also in the DA of a

MP Y , and Z and Y define each other

• In particular, {distribution of Z} ⇔ {distribution of Y } ⇔ R, defined as

R(x) := lim
q→0

q−1P
(
X1 ≥ (qx1)

−1, . . . ,Xd ≥ (qxd)
−1

)
, x ∈ [0,∞]d

• So every max-stable dependence model has a unique “associated” MP distribution

(if Z is Hüsler–Reiss, Y is Hüsler–Reiss Pareto (HRP))
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Extremal graphical models

• Engelke & Hitz (2020) construct graphical models for MP distributions

• Graphical model selection for MP distributions

• Two special cases of extremal graphical models

1. G is a tree (but Y is “arbitrary” MP)

2. Y is HRP (but G is “arbitrary” graph)
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Extremal variograms

• In both cases, the graph structure is encoded into the extremal variogram matrix

Γ(m) of Y rooted at variable m ∈ V = {1, . . . , d},

Γ
(m)
ij := Var(logYi − logYj |Ym > 1), i , j ∈ V

• When Y is HRP, all the Γ(m) = Γ, the parameter matrix, i.e. Γ(m) fully characterize

the HRP distributions
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Empirical variograms

• Knowledge of an extremal variogram Γ(m) =⇒ Identification of the full tree

structure and of the full model of Y is HRP

• Estimation of Γ(m) =⇒
• Estimation of extremal tree models (Engelke & Volgushev, 2020)
• Estimation of Hüsler–Reiss distributions

• Without enforced sparsity on the graphical model (Engelke & al., 2015)

• With enforced sparsity on the graphical model, through L1 penalization (Sebastian

Engelke’s talk) or through a total positivity constraint (Frank Röttger’s talk)

• Motivates study of the empirical variogram
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Empirical variograms

• (iid) data Xt := (Xt1, . . . ,Xtd), 1 ≤ t ≤ n, in the DA of Y

• Select 1 ≤ k := kn ≤ n

• Define approximate MP observations Ŷti :=
k
n

(
1− F̂i (Xit)

)−1
, so k of them exceed

1

• Calculate sample variances

Γ̂
(m)
ij :=

1

k

n∑
t=1

(
log Ŷti − log Ŷtj

)2
1
{
Ŷtm ≥ 1

}
−
(
1

k

n∑
t=1

(
log Ŷti − log Ŷtj

)
1
{
Ŷtm ≥ 1

})2

• Question: how well does Γ̂(m) estimate Γ(m)?

• (Engelke & Volgushev, 2020) prove that Γ̂
(m)
ij

P→ Γ
(m)
ij
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Tail assumption

• Recall that

q−1P
(
X1 ≥ (qx1)

−1, . . . ,Xd ≥ (qxd)
−1

)
−→ R(x)

• Tail assumption: There exists K , ξ > 0: as q → 0,

1. For |J| ∈ {2, 3},

sup
xJ∈[0,1]|J|

∣∣∣q−1P
(
Xj ≥ (qxj)

−1, j ∈ J
)
− RJ(xJ)

∣∣∣ = Kqξ

2. For i ̸= j ,

1− Rij(q
−1, 1) ≤ Kqξ

Only an assumption on the tail model (satisfied by any HR distribution, except

perfect independence)

• “Choice of k” assumption: There exist 0 < α ≤ β < 2ξ/(2ξ + 1) such that

nα ≲ k ≲ nβ
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Density assumption

• Density assumption: the functions Rij have continuous partial derivatives and

densities rij satisfying

rij(x , 1− x) ≤ K (x(1− x))ε, x ∈ (0, 1)

for some ε > 0

• Satisfied if Y is HRP, unless perfect dependence or independence

• Not the weakest possible
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Asymptotic distribution

Conjecture (Engelke, L. & Volgushev, 2021+)

Under the “tail”, “choice of k” and “density” assumptions,

√
k
(
Γ̂(m) − Γ(m)

)
m∈V

⇝
(
W (m)

)
m∈V

for a Gaussian
(
W (m)

)
m∈V

.

Consequences:

• Asymptotic normality of the estimator of the parameters of HR distributions in

(Engelke & al., 2015)

• Confidence sets and tests for graphical models (in fixed dimension)

• Not informative in growing dimension (e.g. d > n)
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Concentration

Theorem (Engelke, L. & Volgushev, 2021+)

Let δ ≥ d3e−
√
k . Under the “tail” and “choice of k” assumptions, with probability at

least 1− δ

max
i,j,m∈V

∣∣Γ̂(m)
ij − Γ

(m)
ij

∣∣ ≤ C (log n)2
√

log d + log(1/δ)

k
.

Further, under the “density” assumption, with probability at least 1− δ

max
i,j,m∈V

∣∣Γ̂(m)
ij − Γ

(m)
ij

∣∣ ≤ C̄

√
log d + log(1/δ)

k
.
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Corollaries: Extremal graph learning guarantees

• Extremal tree learning (Engelke & Volgushev, 2020): P(Ĝ = G ) → 1 if

c1n
β/2 − log d → ∞

• Extremal graphical lasso (Sebastian Engelke’s talk): P(Ĝ = G ) → 1 if

c2n
β/2 − log d → ∞

• MTP2 constrained graph estimation (Frank Röttger’s talk): learning guarantees in

high dimension?
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Bonus: Discussion of the proofs

• Since everything is conditioned on Ym > 1, we write Y
(m)
i := Yi |Ym > 1 and

Ŷ
(m)
i := Ŷi | Ŷm > 1

• Assume i , j , m distinct

• Then

Γ
(m)
ij = E[(logY (m)

i )2] + E[(logY (m)
j )2]− E[(logY (m)

i )(logY
(m)
j )]

−
(
E[logY (m)

i ]− E[logY (m)
j ]

)2
• Similarly

Γ̂
(m)
ij = Ê[(log Ŷ (m)

i )2] + Ê[(log Ŷ (m)
j )2]− Ê[(log Ŷ (m)

i )(log Ŷ
(m)
j )]

−
(
Ê[log Ŷ (m)

i ]− Ê[log Ŷ (m)
j ]

)2
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Bonus: Discussion of the proofs

• P(Y (m)
i ≥ x ,Y

(m)
j ≥ y) = Rijm(1/x , 1/y , 1)

• Using that for X1,X2 ≥ 0

E[X1X2] =

∫ ∞

0

∫ ∞

0

P(X1 ≥ x1,X2 ≥ x2)dx1dx2

• Obtain expression for E[(logY (m)
i )(logY

(m)
j )]:∫ 1

0

∫ 1

0

Rijm(x , y , 1)

xy
dxdy −

∫ 1

0

∫ ∞

1

Rijm([x ,∞), y , 1)

xy
dxdy

−
∫ ∞

1

∫ 1

0

Rijm(x , [y ,∞), 1)

xy
dxdy +

∫ ∞

1

∫ ∞

1

Rijm([x ,∞), [y ,∞), 1)

xy
dxdy

• Rijm can be seen as a measure, so e.g. Rijm([x ,∞), y , 1) := Rjm(y , 1)−Rijm(x , y , 1)
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Bonus: Discussion of the proofs

• Similarly, Ê[(log Ŷ (m)
i )(log Ŷ

(m)
j )] is equal to∫ 1

0

∫ 1

0

R̄ijm(x , y , 1)

xy
dxdy −

∫ 1

0

∫ ∞

1

R̄ijm([x ,∞), y , 1)

xy
dxdy

−
∫ ∞

1

∫ 1

0

R̄ijm(x , [y ,∞), 1)

xy
dxdy +

∫ ∞

1

∫ ∞

1

R̄ijm([x ,∞), [y ,∞), 1)

xy
dxdy

• The tail empirical copula

R̄ijm(x , y , 1) :=
1

k

n∑
t=1

1

{
F̂i (Xti ) ≥ 1− k

n
x , F̂j(Xtj) ≥ 1− k

n
y , F̂m(Xtm) ≥ 1− k

n

}
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Bonus: Discussion of the proofs

• Good news: reduced the problem to studying the tail empirical copula process√
k(R̄ijm − Rijm)

• Well known that
√
k(R̄ijm − Rijm) converges to a GP in ℓ∞(K) for compact K

• Similarly, can easily get concentration result for supK |R̄ijm − Rijm|
• Bad news: None of those are sufficient, since we consider unbounded sets and an

unbounded weighting

• Our fix: choose η > 0 and index the tail empirical copula process by the functions

fijm,x,y ,z :=


(xy)−η1[0,x]×[0,y ]×[0,z], 0 < x , y , z ≤ 1

xηy−η1[x,∞)×[0,y ]×[0,z], 1 < x < ∞, 0 < y , z ≤ 1

(xy)η1[x,∞)×[y ,∞)×[0,z], 1 < x , y < ∞, 0 < z ≤ 1
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Thank you for your attention! Questions?
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