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Michaël Lalancette1 Sebastian Engelke2 Stanislav Volgushev1

1Department of Statistical Sciences, University of Toronto

2Research Center for Statistics, University of Geneva

SSC Annual Meeting, 08/06/2021

1 / 12



Extreme value theory

• Extrapolate outside the range of data and estimate properties of the

underlying distribution beyond the observed regions

• Given 50 years of rainfall data, EVT finds

• the 1-in-100-years rainfall (or even 1-in-10 000 years)

• the probability of at least xmm rainfall (x larger than anything observed)

• Mathematically, EVT uses largest data points to estimate the whole tail of

one (or multiple) random variable(s)
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Tail dependence

• Typical problem: (X ,Y ) = (rainfall at location 1, rainfall at location 2)

• Estimate

P(X ≥ u,Y ≥ v),

for large (unobserved) values u, v

• Univariate methods ⇒ estimation of marginal tails of X and Y

• Dependence structure in tail regions
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Tail dependence

• Copula-based approach: represent the tail dependence structure by

R(x , y) := lim
t↓0

t−1P(F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty),

F1 and F2 are marginal d.f. of X , Y

• Extrapolation: limit allows to write

P(F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty) ≈ tR(x , y)

• So estimation of R ⇒ estimation of far tail probabilities
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Asymptotic independence

• What if X and Y are independent? Then R(x , y) = 0

• Many distributions satisfy R(x , y) = 0 (asymptotically independent)

• Example: (X ,Y ) is jointly Normal with correlation ρ ∈ (−1, 1)

• Modelling/inference based on R ⇒ cannot distinguish different asympt.

independent distributions
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Alternative tail representation: the function c

• Instead of R, we consider the function

c(x , y) := lim
t↓0

q(t)−1P(F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty)

• q is chosen so that the limit is non-trivial

• As opposed to R, c has non-trivial form whether X ,Y are asympt.

independent or dependent

• Examples:

• X and Y are independent: c(x , y) = xy

• X and Y are Normal with correlation ρ: c(x , y) = (xy)1/(1+ρ)
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Non-parametric estimation (unfeasible)

• (iid) observations (X1,Y1), . . . , (Xn,Yn)

• Wish to estimate

c(x , y) := lim
t↓0

q(t)−1P(F1(X ) ≥ 1− tx ,F2(Y ) ≥ 1− ty)

• For a small tn > 0,

ĉn(x , y) := q(tn)
−1 1

n

n∑
i=1

1
{
F̂1(Xi ) ≥ 1− tnx , F̂2(Yi ) ≥ 1− tny

}
,

where F̂j are the empirical d.f.
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Parametric method

• Suppose c = cθ0 ∈ {cθ : θ ∈ Θ}

• Estimate θ0 by

(θ̂, σ̂) := argmin
θ, σ

∥∥∥∥σ ∫
gcθ − q(tn)

∫
g ĉn

∥∥∥∥ ,
for a weight function g : [0,∞)2 → Rp

• If ĉn ≈ c , hopefully θ̂ ≈ θ0 and σ̂ ≈ q(tn)
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Spatial tail dependence

• Typical problem: {X (s) : s ∈ R2} = rainfall over a spatial domain

• Simultaneous estimation of marginal tails of X (s)

• Given observations at d locations, estimate

P(Fs(X (s)) ≥ 1− tx(s), for each s ∈ S), (*)

for small t and finite collection of locations S

• Locations S potentially unobserved

• Spatial tail dependence model: probabilities (*) for all collections S

9 / 12



Spatial tail dependence

• Key: popular models are identifiable by finite number of pairwise prob.

P(Fs1(X (s1)) ≥ 1− tx(s1),Fs2(X (s2)) ≥ 1− tx(s2))

• Spatial model (θspatial) ⇒ Bivariate model for each pair (θpair(θspatial))

• Bivariate methodology ⇒ Estimator θ̂pair for each pair

• Fit spatial model via least squares:

θ̂spatial := argmin
θspatial

∑
pair ∈ observed pairs

∥∥θpair(θspatial)− θ̂pair
∥∥2
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Rainfall over Victoria region (AUS), 1967-2017
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• 40 locations ⇒ 780 pairs

• Fractal inverted Brown–Resnick process

• Pairwise parameter depends on Euclidean

distance

• Blue dots = θ̂pair, black curve = fitted

spatial model
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Thanks for your attention! Questions?

Lalancette, M., S. Engelke, and S. Volgushev (2021). Rank-based estimation under asymptotic

dependence and independence, with applications to spatial extremes. Ann. Stat., to appear.

Other contributions in the paper:

• Novel examples of (bivariate and spatial) tail models

• Asymptotic theory for all (bivariate and spatial) estimators

• Simulation studies
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