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Abstract

In multivariate extreme value theory, the study of tail dependence seeks to understand

the dependence structure of multivariate data among those observations that are

considered extreme, typically by having at least one of their components take a

large value. This thesis offers solutions to two inferential problems concerning tail

dependence.

Existing work often assumes that observed variables are tail dependent, i.e., that

observing multiple extreme values simultaneously is roughly as likely as observing at

least one extreme. Real data, however, suggests that this is a restrictive assumption

even in the bivariate case; the probability of simultaneous extremes can often be

significantly smaller than the probability of a single extreme, while being non-negligible.

In the first part of this thesis, a novel method is introduced to construct parametric

models for bivariate tails that can be agnostic to the presence or absence of tail

dependence. A class of M-estimators is constructed for the models and is theoretically

justified. The model construction, inference methodology and asymptotic theory are

then extended to the case where the tails of a spatial process are of interest.

The conditional tail dependence structure of a moderate- to high-dimensional

random vector can be encoded in the edges of an extremal graph, where each vertex

represents an observed variable. Learning general extremal graphs in a fully data-

driven way is an important open problem. In the second part of this thesis, a family of

algorithms is introduced to solve this task by borrowing tools from Gaussian graphical

model selection. For two such algorithms which are based on L1 regularization,
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consistency of the estimated graph is established in a general setting. No assumptions

are made on the structure of the underlying graph, other than connectedness, and the

number of variables is allowed to be exponentially larger than the effective sample size.

Along the way, a general concentration result is proved for the empirical extremal

variogram, which has widespread applicability in multivariate extreme value theory.
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Chapter 1

Introduction

“Juillet s’en vient

Notre cœur dégèle”

Neige

The main chapters of this thesis are formed of two research papers that were written

during the past four years. While Chapters 2 and 3 are not directly related to each

other, they both fall under the following narrative: they offer new methodologies for

the estimation of certain aspects of the dependence structure between the extremes of

two or more random variables. They both strongly rely on the framework of extreme

value theory and as such, the current chapter is mostly devoted to that topic. It

should be seen as a gentle introduction to the subject, going back almost a century

and slowly building up to the content of Chapters 2 and 3. Those two chapters are

left mostly unchanged from the respective source materials (the published version of

the former, the current draft manuscript for the latter). Each is self-contained with

its own introduction, a breakdown of the chapter as well as a review of the relevant

literature. For that reason, the present chapter is by no means meant to be exhaustive.

It does not elaborate on the numerous applications of extreme value theory, nor does

it lose itself in precise mathematical statements. Rather, we attempt to contextualize

the contribution of those later chapters into the existing body of literature, only

introducing the necessary material and referencing an exclusive selection of the most

relevant work.

In particular, the content of Chapter 2 comes up in Section 1.2.3. After touching the

subject of graphical modeling, this introduction builds up to the content of Chapter 3

in Section 1.3.2.

This chapter is finally closed with an attribution section, where the role of each co-

author in writing the two papers that became the present thesis is precisely described

1



CHAPTER 1. INTRODUCTION 2

and acknowledged.

1.1 Extreme value theory

In multiple areas of application of statistics, rare events can have catastrophic con-

sequences. Since they are typically not represented in most of the available data,

traditional statistical methods fail to produce valid inferences on the small probabilities

of those occurrences. In environmental science, understanding the distribution of

unusual meteorological phenomena is crucial in building the necessary infrastructure

to protect populations, such as dikes against flooding. In insurance, the risk associated

to extreme simultaneous claims must be accurately assessed in order to correctly

manage actuarial reserves.

Extreme value theory offers a framework to statistically infer the probability of

small events that consist in one or a collection of random variables taking on a large

value. On a high level, it does so by studying the far, typically unobserved tail regions

of probability distributions. In contrast to more traditional statistical methods which

use the bulk of data to infer central features of the data-generating distribution,

extreme value methods use extreme observations and extrapolation tools to infer the

properties of the latter outside the range of available data.

Mathematically speaking, suppose that we are interested in a random variable X,

and especially in the tail regions of its distribution. This could be motivated by a

number of questions, such as:

1. If we were to observe independent realizations X1, . . . , Xn of X, what should we

expect about the behavior of their maximum maxiXi?

2. For a large, predefined threshold x, what is the probability P(X > x)?

3. For a small number q > 0, what is a (1− q)th quantile of X, that is a number x

such that P(X > x) = q?

1.1.1 Sample maxima

The Fisher–Tippett–Gnedenko theorem, perhaps the most famous result in extreme

value theory, offers a direct and surprisingly clean answer to the first question above.

This result, which bears many names including the first extreme value theorem or the

extremal types theorem, goes as far back as Fisher and Tippett (1928), and a partial

version was even discovered by Fréchet (1927). It states the following. Let X1, . . . Xn

be independent realizations of X and suppose that there exist sequences of numbers
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an > 0 and bn ∈ R such that

max1≤i≤nXi − bn
an

⇝ Z, n→ ∞ (1.1)

for a non-degenerate random variable Z, where ⇝ denotes convergence in distribution

(or weak convergence). Then the distribution function G of Z has to be of the form

G(z) = Gγ((z − µ)/σ) for some µ ∈ R, σ > 0 and γ ∈ R, where

Gγ(z) := exp{−(1 + γz)−1/γ}, 1 + γz > 0.

Hereafter, for γ = 0, (1 + γz)−1/γ is understood as the limit e−z. This defines the

family of generalized extreme value (GEV) distributions {Gγ}, which is parameterized

by the shape parameter γ. For positive shape, this is also known as the family of

Fréchet distributions, while negative shape gives rise to the family of negative Weibull

distributions; G0 is also known as the Gumbel distribution. Informally, the shape

parameter characterizes the heaviness of the upper tail of the random variable X and

is therefore usually called the tail index, or extreme value index, of X. If it is positive,

then X is unbounded above and is said to be heavy-tailed. If it is negative, then

X is bounded above. If γ = 0, then X can either be bounded or unbounded (but

light-tailed), depending on the sequences an and bn that make (1.1) hold.

The theorem in its original form guarantees that GEV distributions are the only

non-degenerate laws that can arise as the limit of normalized maxima of independent

and identically distributed (iid) samples. What it does not tell is for which distributions

do normalized maxima converge weakly to a GEV distribution, although sufficient

conditions were obtained by von Mises (1936).

Let F be the distribution function of X. Note that (1.1) holds if and only if

F n(anx+ bn) −→ Gγ(x), n→ ∞ (1.2)

for some γ ∈ R; by the choice of an and bn, the location and scale parameters µ and

σ of the limiting distribution can be assumed to be 0 and 1, respectively. The set of

distributions F that satisfy the above property is called the max-domain of attraction

of Gγ. In later work (Gnedenko, 1943), an exact characterization of the max-domain

of attraction of each GEV distribution was obtained. For a complete and modern

statement, we refer to Theorem 1.2.1 of de Haan and Ferreira (2006) or to Chapter

1 of Resnick (1987). For γ ≠ 0, the domain of attraction condition ties in elegantly

to the theory of regular variation. An interesting fact is that with the right choice

of constants an, bn, Gγ satisfies (1.2) with equality, i.e., Gn
γ(anx+ bn) = Gγ(x). This

property is known as max-stability, in parallel with the standard notion of stability,
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and in fact the family of GEV distributions are the only max-stable distributions, up

to location and scale.

Since information on the tail heaviness of X is contained in the value of the tail

index, an interesting problem is to estimate γ. The relation in (1.1) suggests the

following strategy. Split the n observations into k blocks of approximately equal size,

which is roughly n/k. Then the maxima of each block are independent, as long as

the observations are, and they can be considered to be approximate observations

from the distribution of an/kZ + bn/k, i.e., a location-scale transformation of the GEV

distribution Gγ. The tail index can then be estimated by maximum likelihood or by

methods based on moments and probability-weighted moments (for details, we refer

to Beirlant et al., 2004, Section 5.1). This general approach is usually termed block

maxima (BM) inference.

The larger n/k is, the closer the distribution of the block maxima is to the limiting

GEV, but the smaller k, the number of such approximate observations, is. This leads

to a bias-variance trade-off that makes picking the number k, the effective sample

size, generally difficult. Virtually every extreme value analysis requires some version

of this choice.

1.1.2 Threshold exceedances

To answer the last two questions posed at the beginning of the present section, we

now consider the problem of tail estimation. It would in theory be sufficient to know

the value of the survival function F̄ := 1− F of X at high levels. Based on the iid

sample X1, . . . , Xn, a natural estimate of 1− F (x) is

1− F̂ (x) :=
1

n

n∑
i=1

1{Xi > x},

the proportion of observations that exceed x. If x is beyond the range of observed

data, that is no observations exceed it, then the above estimate is zero, and we are

left with the conclusion that the probability that X exceeds x is approximately null

(or simply that it is very small). Is it possible to somehow make this inference more

precise for large x?

The answer turns out to be affirmative, and the tool that allows it is the concept

of conditional tail. For any u < x, we may write

F̄ (x) = P(X > x) = P(X > u)P(X − u > x− u |X > u) =: F̄ (u)F̄u(x− u), (1.3)

where F̄u represents the conditional survival function of X − u given that X > u. The
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Pickands–Balkema–de Haan theorem (Balkema and de Haan, 1974; Pickands, 1975),

often called the second extreme value theorem, offers a very surprising insight on

conditional survival functions. It states that for a large class of survival functions F̄

(or equivalently, of distributions F ), there exist a positive function σ and a number

γ ∈ R such that

F̄u(σ(u)y) −→ (1 + γy)−1/γ, 1 + γy > 0, (1.4)

as u tends to the upper endpoint of the distribution of X; either ∞ if X is unbounded,

or the upper limit of its support if it is bounded. It also states that this is the

only possible form for a non-degenerate limit. For a fixed, large u, this suggests the

approximation

F̄u(x− u) ≈
(
1 + γ

x− u

σ

)−1/γ

+
,

where a+ denotes the positive part max{a, 0}. Here, σ is dependent on the choice

of u while γ is a property of F̄ , and more specifically of the tail of the random

variable X, only. That is to say, given X > u, X − u is approximately distributed

according to a generalized Pareto (GP) distribution with scale parameter σ = σ(u)

and shape parameter γ. The implications are quite strong: (almost) no matter how

the distribution of X is shaped, its conditional tail can be approximated by a two-

parameter family of distributions. Assuming that u is chosen so that a proportion of

the observations X1, . . . , Xn exceed it, then the parameters σ and γ can be estimated

via, for instance, maximum likelihood on the exceedances Xi − u |Xi > u.

Coming back to the tail probability in (1.3), an estimate can now be computed as

̂̄F (x) := 1

n

n∑
i=1

1{Xi > u}
(
1 + γ̂

x− u

σ̂

)−1/γ̂

+
,

where σ̂ and γ̂ are the maximum likelihood estimates. Note that once the latter two

parameters have been estimated, any value x can in principle be plugged in ̂̄F . A

non-trivial estimate of the whole tail of X is thus obtained by extrapolating from the

most extreme observations in the sample.

This general approach is usually called peaks over threshold (POT) inference. It

requires the choice of the threshold u which determines the observations to be used for

fitting. Typically, u will be chosen as a sample quantile of order 1− k/n, for a number

k that is large but such that k/n is small. Similar to the block maxima approach, one

then needs to select the effective sample size k according to a bias-variance trade-off:

smaller k means less data (so higher variance), but it also means that the selected

observations are more extreme (so closer to the limiting GP model, leading to a lower

bias).
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The punchline of this section is that the conditions under which the limiting

relation (1.4) holds are exactly the same as the necessary and sufficient conditions

for (1.1). That is, the set of distributions for which the threshold exceedances are

asymptotically GP distributed consists exactly of the max-domains of attraction of

the GEV distributions Gγ. Moreover, the shape parameter γ that appears in (1.4) is

none other than the tail index of the random variable X. So loosely speaking, whether

we are studying sample maxima or extreme observations, we are learning about the

heaviness of the upper tail of the distribution of interest through its tail index γ.

Note here that there are a number of different inferential procedures not mentioned

above for the tail index, such as the popular Hill (Hill, 1975) and Pickands (Pickands,

1975) estimators, or for other properties of the tail (such as extreme quantiles). For a

comprehensive overview, we refer to Chapters 4 and 5 of Beirlant et al. (2004) and

Chapter 4 of de Haan and Ferreira (2006).

1.2 Tail dependence

The most severe casualties are commonly associated to multiple phenomena that

cannot be summarized into a single quantity. A plausible situation is that two

variables are observed and the interest is in the probability that at least one exceeds a

high threshold. For example, the discharge is measured at two locations along a river,

and an extreme at one location could be sufficient for a flooding event. Other severe

risks are due to joint extreme events. Simultaneous extremes in two or more climate

variables in a given region, such as temperature, humidity or wind speed, can have

devastating consequences.

The univariate extreme value methods, while successful at estimating tail properties

of single random variables, do not take into account the possible dependence between

high values taken by different variables. The study of tail dependence aims to fill

that gap by proposing and estimating various models and representations for the

dependence between extremes. It can be motivated by questions such as:

1. If we were to repeatedly observe (potentially non-independent) random variables

X1, . . . , Xd, how correlated would the d maxima be? Should we expect them to

occur simultaneously?

2. How should we expect “multivariate extreme observations” to behave?

In a lot of work, including the one presented in this thesis, those questions are

formalized in terms of the copula of the multivariate observations. The object of

interest is then purely described by the dependence structure between the observed
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variables; the conclusions would be unchanged if the marginal distributions of some of

the variables were altered, for instance by changing the measuring units.

Analogously to the univariate case, two general approaches have arisen to investigate

the tail dependence of Euclidean data, and in particular to answer the questions

above. They are based on multivariate sample maxima and on multivariate threshold

exceedances, respectively.

1.2.1 Multivariate maxima

Let X := (X1, . . . , Xd) ∈ Rd be a random vector and X1, . . . ,Xn be independent

copies, with Xt := (Xt1, . . . , Xtd). If(
max1≤t≤nXt1 − bn1

an1
, . . . ,

max1≤t≤nXtd − bnd
and

)
⇝ Z (1.5)

for a non-degenerate random vector Z, then X (or its distribution) is said to be in the

max-domain of attraction of Z (or, equivalently, of the distribution of Z). The family

of multivariate extreme value (MEV) distributions which arise as possible limits in

(1.5) has been completely characterized; see for instance (de Haan and Resnick, 1977)

or Section 5.4 of Resnick (1987). They correspond exactly, as in the univariate setting,

to the class of multivariate max-stable distributions. The marginal distributions of Z

themselves have to be location-scale transformations of GEV distributions. Denoting

those marginals by G1, . . . , Gd, the joint distribution function G of Z can be expressed

as

G(z) := exp{−L(− logG1(z1), . . . ,− logGd(zd))},

where L : [0,∞)d → [0,∞) is called the stable tail dependence function (of Z).

It is convex, component-wise non-decreasing, homogeneous (for a > 0, L(az) =

aL(z)) and satisfies the bounds maxi zi ≤ L(z) ≤
∑

i zi. Conversely, any such

function corresponds to a MEV distribution. The stable tail dependence function is

equivalent to the copula of Z, in that it characterizes the latter while containing no

information on the marginals G1, . . . , Gd. Other than their copulas themselves, many

equivalent objects have been introduced to characterize the dependence structure of

MEV distributions. Examples include the function Ω (Sibuya, 1960), the Pickands

dependence function (Pickands, 1981), and various spectral measures (e.g., de Haan

and Resnick, 1977); we refer to Chapter 6 of de Haan and Ferreira (2006) for an

exposition.

Inference for multivariate extreme values is typically produced by first estimating

the marginal tails, e.g., by fitting individual GEV distributions, and subsequently
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inferring the tail dependence structure by margin-free, rank-based methods. This

thesis develops methodologies for the latter task.

1.2.2 Tail dependence through the functions L and R

If X has marginal distribution functions F1, . . . , Fd and is in the max-domain of

attraction of a MEV distribution Z with stable tail dependence function L, then as

q ↓ 0,

q−1P
(
F1(X1) > 1− qx1 or . . . or Fd(Xd) > 1− qxd

)
−→ L(x), x ∈ [0,∞)d. (1.6)

In fact, this limiting relation is equivalent to the copula of X being attracted by the

extreme value copula of Z; under the assumption that each marginal Fi is in the

max-domain of attraction of the distribution Gi of Zi, (1.6) is equivalent to (1.5).

A consequence of (1.6) is that as q ↓ 0,

q−1P
(
F1(X1) > 1− qx1, . . . , Fd(Xd) > 1− qxd

)
−→ R(x), x ∈ [0,∞)d, (1.7)

for a certain function R which, however, does not quite fully characterize the tail

dependence structure; R can always be deduced from L by an inclusion-exclusion

formula, but the converse fails in certain cases. Note that L and R are equivalent in

dimension d = 2, being linked by the relation L(x, y) = x+ y −R(x, y).

The relation (1.6) suggests that the tail dependence structure can be inferred by

studying observations where at least one variable is large and estimating L. To an

extent, features of the tail dependence structure can also be learned from studying the

rarer data points where all components are simultaneously large and estimating R.

Hereon, “large” should be understood relatively to each variable’s marginal distribution,

as in (1.6) and (1.7).

A natural non-parametric estimator of L can be derived from the tail empirical

copula process of iid data. Its asymptotic behavior is well understood, both in the

bivariate (Huang, 1992; Drees and Huang, 1998) and general multivariate (Einmahl

et al., 2012; Fougères et al., 2015) settings. Finite sample guarantees were even

demonstrated in arbitrary dimension by Goix et al. (2015). Einmahl et al. (2008,

2012) show how this estimator can be leveraged to fit parametric tail models based on

the stable tail dependence function via M-estimation.

1.2.3 Bivariate tail dependence and asymptotic independence

Suppose that X and Y are independent random variables. It is trivial to show

that the random vector (X, Y ) satisfies (1.6) and (1.7) with L(x, y) = x + y and
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R(x, y) = 0. Now, suppose instead that (X, Y ) is normally distributed with correlation

ρ ∈ (−1, 1). One can show that, again, (1.6) and (1.7) are satisfied with the same

functions L(x, y) = x+ y and R(x, y) = 0 (see for instance Ledford and Tawn, 1997,

Appendix A). As a matter of fact, a multitude of bivariate distributions can be seen

to have this particular pair of L and R functions. In this case, X and Y are said

to be asymptotically independent. Roughly speaking, X and Y are asymptotically

independent if the probability that they simultaneously take an extreme value is of

smaller order than the probability of one single extreme.

Modeling the joint tail of bivariate data through the stable tail dependence function

(or equivalently the function R) then amounts to pooling all the asymptotically

independent distributions together. This approach does not separate the joint tails

of distributions which, by all measures, should be distinguished. For example, see

Figures 2.10 to 2.12 (except the left panel in the latter) or Ledford and Tawn (1997),

Figure 1, panels (b)-(d), for sample clouds from different asymptotically independent

distributions.

Mathematically, for such distributions, the only information contained in the

functions L and R is that, by (1.7),

P (F1(X) > 1− qx, F2(Y ) > 1− qy) (1.8)

is of order o(q) as q ↓ 0. There is generally a certain amount of “second order tail

dependence” that is not captured by this definition. In the case of the bivariate

normal distribution with correlation ρ ∈ (−1, 1), for instance, (1.8) is asymptotically

proportional to q2/(1+ρ)(− log q)−ρ/(1+ρ). For other distributions, this is often simplified

to q1/η, for some parameter η ∈ (0, 1], multiplied by a logarithmic term in q (or more

generally, any slowly varying function of q). The coefficient of tail dependence η, due

to Ledford and Tawn (1996), is equal to 1/2 in case of perfect independence. Larger

(smaller) values are generally interpreted as positive (negative) tail association, with

asymptotically dependent distributions (that have R(x, y) ̸= 0) necessarily having

η = 1.

The approach put forward by Ledford and Tawn (1996, 1997) is to model (1.8)

for a fixed, small q. For a number of exactly specified, smooth models, they develop

inference procedures based on censored likelihoods. Under considerably more general

settings, other papers focus on the estimation of the coefficient η which characterizes

the strength of association (Peng, 1999; Draisma et al., 2004).

Draisma et al. (2004) assume a tail expansion reminiscing of (1.7), but where the

factor q−1 is replaced by whichever scale makes the limit non-trivial. This essentially

reduces to (1.7) under asymptotic dependence, but it becomes a representation of
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the second order tail dependence otherwise. Under that assumption, they develop a

non-parametric estimator of far bivariate tail probabilities which is provably consistent

under both asymptotic dependence and independence.

In Chapter 2, which has been published in the form of Lalancette et al. (2021), we

adopt the general setting of Draisma et al. (2004), particularly their tail expansion.

While the limiting function c that appears therein is merely a tool that they use, we

treat it as the inferential object and show that it can be used to construct meaningful

parametric models for bivariate tails that are agnostic to the presence of asymptotic

dependence. In particular, we show that popular models from the literature (the

family of inverted max-stable distributions (Wadsworth and Tawn, 2012, Example

2) and a random scale construction (Wadsworth et al., 2017; Engelke et al., 2019b))

can be rephrased as models for c. We revisit a certain tail empirical copula process

introduced in Draisma et al. (2004) which can be seen as a non-parametric estimator

of c. Adapting the ideas of Einmahl et al. (2012), we derive a family of M-estimators

for parametric models that are based on this function. We further show how the

methodology from Einmahl et al. (2016) can be adapted, using our bivariate M-

estimators, to fit certain types of tail processes over a spatial domain (Wadsworth and

Tawn, 2012).

1.2.4 Multivariate threshold exceedances

Let us step back to the general multivariate setting. Yet another representation of

the tail dependence structure of the random vector X ∈ Rd is through multivariate

threshold exceedances. A generally accepted definition of an extreme observation of

X is one where at least one of the variables X1, . . . , Xd exceeds a high quantile of

its marginal distribution. Equation (1.6) implies the existence of a random vector Y

such that as q ↓ 0, {
q

1− F (X)

∣∣∣ max
i
Fi(Xi) > 1− q

}
⇝ Y , (1.9)

where F (X) denotes the standardized random vector (F1(X1), . . . , Fd(Xd)). In other

words, when the marginals ofX are transformed to unit Pareto distributions, the scaled

observations where at least one component is extreme are approximately distributed as

Y . The family of distributions that can arise as the above limit, termed multivariate

Pareto, have been fully characterized (Rootzén and Tajvidi, 2006; Rootzén et al.,

2018a). The law of Y in (1.9) contains the same information as the stable tail

dependence function L appearing in (1.6); its distribution function can be uniquely

expressed in terms of L.
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Multivariate peaks-over-threshold inference can therefore be defined as using the

extreme observations to estimate the multivariate Pareto distribution of Y , offering a

new way to infer the tail dependence structure of X. Likelihood-based methods are

investigated in Rootzén et al. (2018b). In the second half of this thesis, we tackle this

estimation problem with the use of graphical models.

1.3 Graphical models

An undirected graph is a couple G := (V,E), where the vertex set V (also called

nodes) is an arbitrary, usually finite set which will be taken here to be {1, . . . , d} for an

integer d ≥ 3. The edge set E ⊆ V ×V is a subset of unordered pairs of elements of V ,

representing edges that link the vertices in V ; see Figure 3.1 for visual representation

of simple undirected graphs. For the remainder of this section, G = (V,E) will be

considered a fixed, undirected graph.

A random vector W ∈ Rd is said to be a (undirected) graphical model on G (or

with respect to G) if it satisfies the pairwise Markov property

Wi ⊥ Wj |W\{i,j} ⇐⇒ (i, j) /∈ E,

i.e., pairs of variables that are not connected in the graph are independent conditionally

on the values taken by all the other variables. Informally, a graphical model on G can

be seen as a distribution where all the dependence flows through the connections in G.

The usefulness of graphical models for statistics stems from the famous Hammersley–

Clifford theorem, first developed by Hammersley and Clifford (1971). Suppose that

W has a positive density (with respect to some product measure on Rd). Then the

theorem states that W is a graphical model on G if and only if its density can be

factorized into a product of functions of certain groups of variables determined by

the structure of G. These groups, called the cliques of G, correspond to the fully

connected groups of nodes. See Theorem 3.9 in Lauritzen (1996) or Section 1.7 of

Maathuis et al. (2019).

By the Hammersley–Clifford theorem, it is enjoyable to know the graphical structure

underlying a high-dimensional distribution. This is especially so if the graph is

sparse, in the sense that it has significantly less than the total possible number of

edges,
(
d
2

)
≈ d2/2. Example of computational tasks that are simplified by a known,

parsimonious graphical structure are Monte Carlo (and MCMC) sampling (see for

instance Section 7.3 of Lauritzen (1996) or Section 5.3.5 of Maathuis et al. (2019)) and

likelihood inference (see for instance Chapters 4 to 6 of Lauritzen (1996) or Chapters

9 and 10 of Maathuis et al. (2019)).
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To enjoy the computational gains provided by a sparse graphical model, however,

the graph needs to be known. Since it is rarely given a priori, this need has spawned

an area of research known as graphical model selection, whose goal is to infer the

underlying graphical structure of given data. This is very difficult to do in all generality,

especially in high dimensions, as it requires detecting conditional independence. Yet,

in the Gaussian case, the problem admits a beautiful simplification.

1.3.1 Gaussian graphical models

Suppose that W ∼ N(µ,Σ) and let Θ := Σ−1 be its precision matrix. It is well known

that Wi ⊥ Wj |W\{i,j} if and only if Θij = 0. The implication is that the graphical

structure of a multivariate Gaussian distribution can be read off of the sparsity pattern

of its precision matrix. This simple fact reduces the problem to estimating simple

moments, namely pairwise covariances, of the data rather than testing for conditional

independence.

A variety of methods has therefore been developed to obtain a sparse (meaning

that it contains exact zeros) estimator of the precision matrix of multivariate Gaussian

data. Alternatively, some methods directly estimate the support of the precision

matrix (the set of its entries which are non-zero). Either can thereupon be turned into

an estimate of the underlying graph. The most popular such algorithms are certainly

neighborhood selection (Meinshausen and Bühlmann, 2006), based on the lasso for

linear regression, and the graphical lasso (Yuan and Lin, 2007; Friedman et al., 2008).

1.3.2 Extremal graphical models

A majority of the distributions that arise and are to be inferred in multivariate extreme

value theory belong to one of two families. The MEV distributions emerge in (1.5) as

weak limits of multivariate sample maxima, and the multivariate Pareto distributions

appear in (1.9) as weak limits of multivariate threshold exceedances. To efficiently fit

high-dimensional tail dependence models, one may wonder whether it is possible for

those distributions to have a non-trivial conditional independence structure.

As it turns out, a major hurdle for graphical modeling of extremes is that for MEV

distributions with a positive continuous density, conditional independence is only

possible under independence (Papastathopoulos and Strokorb, 2016). For a certain

class of MEV models that exhibit certain singularities, directed graphical models are

investigated in Gissibl and Klüppelberg (2018), Klüppelberg and Lauritzen (2019)

and Améndola et al. (2022).

Instead, Engelke and Hitz (2020) consider multivariate Pareto distributions. From
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its definition as a limit in (1.9), it is easy to see that such a random vector Y

is supported on the set L := [0,∞)d \ [0, 1]d. Since this is not a product space,

the variables Y1, . . . , Yd will typically not satisfy standard conditional independence

relations. To overcome this issue, Engelke and Hitz (2020) propose a new notion of

conditional independence, denoted by ⊥e, and define an extremal graphical model on

a connected graph G as a multivariate Pareto distribution Y satisfying

Yi ⊥e Yj |Y\{i,j} ⇐⇒ (i, j) /∈ E.

They further justify their definition by showing that it leads to a Hammersley–Clifford-

type factorization theorem, thus allowing for efficient model building and fitting.

Their work opens up a new question: is it possible to use data from a distribution X

satisfying (1.9) to estimate the graph structure of the multivariate Pareto limit Y ? In

their paper, they describe an algorithm for stepwise selection of block graph models.

Engelke and Volgushev (2020) show that when the extremal graph structure is a tree,

it can be learned consistently by constructing a minimum spanning tree. As edge

weights, they use either of two different summary statistics: the empirical variogram

defined therein and the empirical version of the extremal correlation coefficient (Coles

et al., 1999, denoted as χ).

In Chapter 3, we adopt a certain parametric model for multivariate Pareto dis-

tributions, the Hüsler–Reiss model. We show that by using the empirical variogram

of Engelke and Volgushev (2020), it is possible to consistently learn the graphical

structure of multivariate Pareto distributions under this parametric assumption. Our

methodology makes it possible to consistently learn any connected graph even when

the dimension grows almost exponentially fast in the effective sample size. It is based

on estimating a collection of sparse precision matrices, borrowing tools from Gaussian

graphical model selection, and averaging through a majority voting procedure. Along

the way, we obtain a concentration result for the empirical variogram which is applied,

for instance, in proving high-dimensional consistency of the tree learning algorithm of

Engelke and Volgushev (2020). This result and its proof are already available in the

form of a preprint (Engelke et al., 2021).

1.4 Attribution of the work in Chapters 2 and 3

Chapter 2 is based upon the published version of Lalancette et al. (2021). For this

work, credit goes to Sebastian Engelke and Stanislav Volgushev for the original idea

and the initial direction of the project. The final form of the methodologies presented

is mostly mine, and I am responsible for producing all the numerical results and (the
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final versions of) all the theoretical results and their proofs. Credit is due to SE

and SV for overall guidance and supervision during the whole process. Crucially, the

expertise of SV was invaluable in helping me derive the weak convergence results

found in Section 2.7 and parts of Section 2.8. The proofs of Sections 2.9 and 2.10

are entirely mine. The writing all originated from a draft of mine, but was then

collaboratively reworked by SE, SV and myself, with special credit going to SE for

parts of Section 2.1.

Chapter 3 is based on a draft manuscript which is to be submitted for publication

shortly (Engelke et al., 2022), and part of which is derived from a preprint (Engelke

et al., 2021). Once again, credit goes to SE for suggesting the idea to develop extremal

graph learning methods based on L1 penalization, which originated while he was

working on the paper Engelke and Hitz (2020). It evolved into the final methodology

that is presented here. The theoretical backbone of this paper, Theorem 3.3 as well as

it’s proof which spans Sections 3.11 and 3.12, is my own work. Preliminary versions of

Lemma 3.1 and Corollary 3.1, and the general idea to simplify my prior proof with the

use of those two results, was the fruit of a collaborative effort between SV and myself.

The consistency results for the neighborhood selection and graphical lasso algorithms

and their proofs (Sections 3.9 and 3.10), are also due to collaborative work between

SV and myself. Credit goes to SE for producing the figures appearing in Section 3.5,

while other numerical results (Sections 3.6 and 3.8) are mine. Similarly to Chapter 2,

the writing was collaborative work which originated from a draft written by myself.



Chapter 2

Rank-based estimation under

asymptotic dependence and

independence, with applications to

spatial extremes

2.1 Introduction

Assessing the frequency of extreme events is crucial in many different fields such

as environmental sciences, finance and insurance. The most severe risks are often

associated to a combination of extreme values of several different variables or the joint

occurrence of an extreme phenomenon across different spatial locations. Statistical

methods for accurate modeling of such multivariate or spatial dependencies between

rare events is provided by extreme value theory. Applications include the analysis

of extreme flooding (Keef et al., 2009; Asadi et al., 2015; Engelke and Hitz, 2020),

risk diversification between stock returns (Poon et al., 2004; Zhou, 2010) and climate

extremes (Westra and Sisson, 2011; Zscheischler and Seneviratne, 2017).

Extremal dependence between largest observations of two random variables X and

Y with distribution functions F1 and F2, respectively, can take many different forms.

A classical assumption to measure and model this dependence is multivariate regular

variation (cf., Resnick, 1987), which is equivalent to the existence of the stable tail

dependence function

L(x, y) := lim
t↓0

1

t
P (F1(X) ≥ 1− tx or F2(Y ) ≥ 1− ty) , x, y ∈ [0,∞); (2.1)

see Huang (1992) and de Haan and Ferreira (2006). This condition allows a first

15
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broad classification regarding extremal dependence of bivariate random vectors into

two different regimes. If L(x, y) = x + y, X and Y are said to be asymptotically

independent; in this case the joint exceedance probability is negligible compared to the

marginal exceedance probabilities. Otherwise, a stronger form of extremal dependence,

called asymptotic dependence, holds and the joint exceedance probability is of the

same order as the probability of one of the components exceeding a high threshold.

Most of the existing probabilistic and statistical theory deals with asymptotic

dependence. A variety of methods exists, including non-parametric estimation (Huang,

1992; Einmahl and Segers, 2009; Guillotte et al., 2011), bootstrap procedures (Peng

and Qi, 2008; Bücher and Dette, 2013), parametric approaches including likelihood

estimation (Ledford and Tawn, 1996; de Haan et al., 2008; Padoan et al., 2010; Dombry

et al., 2017) and M-estimation (Einmahl et al., 2008; Engelke et al., 2015). See also

Einmahl et al. (2012, 2016) for inference in the d-dimensional and spatial setting.

There is a rich literature on multivariate tail models (see for instance Gumbel, 1960;

Tawn, 1988; Hüsler and Reiss, 1989, among many others) and generalizations to spatial

domains (Brown and Resnick, 1977; Smith, 1990; Schlather, 2002).

Recent studies have shown that in many applications such as spatial precipitation

(Le et al., 2018) and significant wave height (Wadsworth and Tawn, 2012), dependence

tends to become weaker for the largest observations and asymptotic independence is

therefore the more appropriate regime. In this case, the stable tail dependence function

in (2.1) does not contain information on the degree of asymptotic independence and is

therefore not suitable for statistical modeling. A remedy to this problem was proposed

by Ledford and Tawn (1996, 1997) who introduced a more flexible condition on the

joint exceedance probabilities. Their setting implies the existence of

c(x, y) := lim
t↓0

1

q(t)
P (F1(X) ≥ 1− tx, F2(Y ) ≥ 1− ty) , x, y ∈ [0,∞), (2.2)

where q is a suitable measurable function that makes the limit nontrivial. Necessarily,

q is regularly varying at zero with index 1/η ∈ [1,∞). The residual tail dependence

coefficient η describes the strength of residual dependence in the tail and η < 1 implies

asymptotic independence. One speaks about positive and negative association between

extremes if η > 1/2 and η < 1/2, respectively. Early works focus on estimating the

degree of asymptotic independence η and various estimators have been proposed

and studied (Ledford and Tawn, 1997; Peng, 1999; Draisma et al., 2004). A more

complete description of the residual extremal dependence structure is given by the

function c in (2.2); in fact, the value of η can be deduced from c (see Section 2.2

below). Several parametric families exist for multivariate (e.g., Weller and Cooley,
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2014) and spatial applications (e.g., Wadsworth and Tawn, 2012). Other statistical

approaches for modeling asymptotic independence are also related to this function,

including hidden regular variation (Resnick, 2002; Heffernan and Resnick, 2007)

and the conditional extreme value model (Heffernan and Tawn, 2004). Note that

(2.2) includes the asymptotic dependence case if limt↓0 q(t)/t > 0, and the function

c(x, y) ∝ x+ y − L(x, y) then contains the same information as L.

Since it is typically not known a priori whether asymptotic dependence or inde-

pendence is present in a data set, recent parametric models are able to capture both

regimes as different sub-sets of the parameter space (e.g., Ramos and Ledford, 2009;

Wadsworth et al., 2017; Huser et al., 2017; Engelke et al., 2019b; Huser and Wadsworth,

2019). Most of the literature in this domain is concerned with constructing parametric

models, and estimation is usually based on censored likelihood and discussed informally

while no theoretical treatment of the corresponding estimators is provided. Moreover,

it is typically assumed that extreme observations used to construct estimators already

follow a limiting model, and the bias which results from this type of approximation is

ignored.

This chapter is motivated by a lack of generic estimation methods that work

under both asymptotic dependence and independence and have a thorough theoretical

justification. We first revisit a non-parametric, rank-based estimator of the function c

in (2.2) which appeared in (Draisma et al., 2004) and provide a new fundamental result

on its asymptotic properties, which completely removes any smoothness assumptions

on c. This result is the crucial building block for the second major contribution of this

chapter: a new M-estimation framework that is applicable across dependence classes.

M-estimators for the stable tail dependence function L have been proposed by

Einmahl et al. (2008, 2012, 2016). Under asymptotic dependence, c can be recovered

from L and thus any method for estimating L also yields an estimator for c. However,

this is no longer true under asymptotic independence. Estimators of L can therefore

not be used to fit statistical models with asymptotic independence or models bridging

both dependence classes. We define a new class of M-estimators based on c for

parametric extreme value models that can be applied regardless of the dependence

class. A major challenge under asymptotic independence is due to the fact that the

scaling function q is unknown. Additionally, c loses some of the regularity (such as

concavity) that it enjoys under asymptotic dependence. Nevertheless, we are able to

prove asymptotic normality of our estimators under weak regularity conditions, which

are shown to be satisfied for popular models such as the class of inverted max-stable

distributions (see Wadsworth and Tawn, 2012).

The challenges described above become even greater for spatial data. Even at
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the level of pairwise distributions, real data can exhibit asymptotic dependence at

locations that are close but asymptotic independence at locations that are far apart.

This necessitates models that can incorporate both, asymptotic dependence and

independence at the same time. Estimation in such models calls for methods that can

deal with both regimes simultaneously, and we show that our findings in the bivariate

case can be leveraged to construct estimators in this setting.

In Section 2.2, we provide the necessary background on asymptotic dependence and

independence for bivariate distributions, discuss an extension to the spatial setting,

and provide several examples. The estimation methodology is introduced in Section 2.3,

while theoretical results are collected in Section 2.4. The methodology is illustrated

via simulation studies in Section 2.5, while an application to extreme rainfall data is

given in Section 2.6. Section 2.7 contains the proofs of all the main results found in

Section 2.4, with a number of technical lemmas deferred to Section 2.8. Sections 2.9

and 2.10 present proofs of several claims from different examples. A brief discussion of

computational complexity in spatial estimation is given in Section 2.11 and additional

simulation results appear in Section 2.12.

2.2 Multivariate extreme value theory

2.2.1 Bivariate models

Let (X, Y ) be a bivariate random vector with joint distribution function F and marginal

distribution functions F1 and F2, respectively. There is a variety of approaches to

describe the joint tail behavior of (X, Y ).

The assumption of multivariate regular variation (cf., Resnick, 1987) is classical

in extreme value theory and the stable tail dependence function in (2.1) has been

extensively studied. Its margins are normalized, L(x, 0) = L(0, x) = x, and it satisfies

x∨y ≤ L(x, y) ≤ x+y for all x, y ∈ [0,∞). Moreover, it is a convex and homogeneous

function of order one, the latter meaning that L(tx, ty) = tL(x, y) for all t > 0. The

importance of stable tail dependence functions stems from their connection to max-

stable distributions. A bivariate random vector (Z1, Z2) has max-stable dependence

with standard uniform margins iff its distribution function is given by

P (Z1 ≤ x, Z2 ≤ y) = exp{−L(− log x,− log y)}, x, y ∈ [0, 1], (2.3)

where L is the stable tail dependence function pertaining to (Z1, Z2). Note that

any max-stable distribution associated with L satisfies (2.1) with that same L, this

follows after a simple Taylor expansion. Two examples of max-stable distributions
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(equivalently, stable tail dependence functions) that will repeatedly appear in the

chapter are as follows.

(i) The bivariate Hüsler–Reiss distribution (Hüsler and Reiss, 1989; Engelke et al.,

2015) is defined by

L(x, y) = xΦ
(
λ+

log x− log y

2λ

)
+ yΦ

(
λ+

log y − log x

2λ

)
,

where Φ is the standard normal distribution function and λ ∈ [0,∞] parametrizes

between perfect independence (λ = ∞) and dependence (λ = 0).

(ii) The asymmetric logistic distribution (Tawn, 1988), is given by

L(x, y) = (1− ν)x+ (1− ϕ)y + (νrxr + ϕryr)1/r, ν, ϕ ∈ [0, 1], r ≥ 1.

Note that ν = ϕ = 1 yields the classical logistic model (Gumbel, 1960).

While multivariate regular variation and max-stability have been very popular

due to their nice theoretical properties, they are not informative under asymptotic

independence which limits their use in many applications.

Assumption (2.2) allows for more flexible tail models since the limiting function

c is non-trivial even under asymptotic independence and contains information on

the structure of residual extremal dependence in the vector (X, Y ). For the sake of

identifiability, we scale q such that c(1, 1) = 1. We will refer to c and q as the survival

tail function and the scaling function associated to (X, Y ). It turns out that q has

to be regularly varying of order 1/η ∈ [1,∞) and that c is a homogenous funcion of

order 1/η, that is,

c(tx, ty) = t1/ηc(x, y), t > 0;

see for example Draisma et al. (2004) or Lemma 2.2. Note that the extremal dependence

coefficient (see Coles et al., 1999) can be defined as χ := limt↓0 q(t)/t. Asymptotic in-

dependence is then equivalent to χ = 0, or q(t) = o(t), whereas asymptotic dependence

corresponds to χ > 0.

Furthermore, the homogeneity property of c implies a spectral representation. More

precisely, there exists a finite measure H on [0, 1] such that

c(x, y) =

∫
[0,1]

( x

1− w
∧ y

w

)1/η
H(dw), x, y ∈ [0,∞);

see Theorem 1 in Ramos and Ledford (2009) or Lemma 2.6.

We provide several examples that illustrate the concepts discussed above without

going too deeply into technical details. A more thorough discussion of the corresponding
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theory is given throughout Section 2.4.

Example 2.1 (Domain of attraction of max-stable distributions). Suppose that (X, Y )

satisfies (2.1) for a stable tail dependence function L which is not everywhere equal

to x + y. Then (2.2) holds with q(t) = χt and c(x, y) = (x + y − L(x, y))/χ, where

the extremal dependence coefficient χ is positive. We further note that (2.1) holds

whenever (X, Y ) is in the max domain of attraction of a max-stable random vector

Z satisfying (2.3), see de Haan and Ferreira (2006) for a definition and additional

details.

Example 2.2 (Inverted max-stable distributions). The family of inverted max-stable

distributions (e.g., Wadsworth and Tawn, 2012, Definition 2) is parametrized by all

stable tail dependence functions. More precisely, let G be the distribution function of

a bivariate distribution with max-stable dependence, uniform margins and stable tail

dependence function L. A random vector (X, Y ) with uniform marginal distributions

is said to have an inverted max-stable distribution with stable tail dependence L if

(1−X, 1−Y ) ∼ G. Assuming that L satisfies a quadratic expansion (see Example 2.8),

the law of (X, Y ) satisfies (2.2) with

q(t) = tL(1,1), c(x, y) = xL̇1(1,1)yL̇2(1,1),

where L̇j denotes the j-th directional partial derivative of L from the right, j = 1, 2.

Any such stable tail dependence function satisfies L(1, 1) = L̇1(1, 1) + L̇2(1, 1) ∈ (1, 2],

and therefore this is an asymptotically independent model with η = 1/L(1, 1).

Any existing parametric class of stable tail dependence functions can be used to

define a parametric class of inverted max-stable distributions. In particular we consider

the two families discussed earlier

(i) Provided that λ > 0, the inverted Hüsler–Reiss distribution has

q(t) = t2θ, c(x, y) = (xy)θ, (2.4)

where θ := Φ(λ) ∈ (1/2, 1].

(ii) The inverted asymmetric logistic distribution has

q(t) = tθ1+θ2 , c(x, y) = xθ1yθ2 , (2.5)

where θ1 := 1 − ν + νr(νr + ϕr)1/r−1 and θ2 := 1 − ϕ + ϕr(νr + ϕr)1/r−1. Note

that by suitable choices of the parameters r, ν, ϕ any value of (θ1, θ2) ∈ (0, 1]2

such that θ1 + θ2 ∈ (1, 2] can be obtained.
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Example 2.3 (A random scale construction). Bivariate random scale constructions

are a popular way of creating distributions with rich extremal dependence structures;

see Engelke et al. (2019b) and references therein for an overview. They are random

vectors of the form (X, Y ) = R(W1,W2) where the radial variable R is assumed

independent of the angular variables Wj, j ∈ {1, 2}. This motivates the following

model with parameters αR, αW > 0:

(X, Y ) = R(W1,W2), R ∼ Pareto(αR),Wj ∼ Pareto(αW ) (2.6)

where W1,W2 are independent and a Pareto(α) distribution has distribution function

1− x−α for x ≥ 1. By Example 2.9 below, (X, Y ) satisfies (2.2) with functions q and

c depending only on the value of the ratio λ := αR/αW . In particular, we obtain

asymptotic dependence if λ < 1 and asymptotic independence otherwise. Detailed

expressions for q and c are provided in Example 2.9.

2.2.2 Spatial models

Spatial extreme value theory is an extension of multivariate extremes to continuous

index sets. It is particularly useful for modeling extremes of natural phenomena over

spatial domains and examples include heavy rainfall, high wind speeds and heatwaves

(e.g., Davison and Gholamrezaee, 2012; Le et al., 2018).

Let T be a spatial domain (typically a subset of R2) and Y = {Y (u) : u ∈ T } be

a stochastic process whose extremal behavior we are interested in. We impose the

condition in (2.2) on all bivariate margins of Y so that for each pair s = (u, u′) of

locations, and all x, y ∈ [0,∞) the limit

c(s)(x, y) := lim
t↓0

1

q(s)(t)
P
(
F (u)(Y (u)) ≥ 1− tx, F (u′)(Y (u′)) ≥ 1− ty

)
(2.7)

exists and is non-trivial; here F (u) is the distribution function of Y (u). Similarly to

the bivariate case, q(s) must be regularly varying with index 1/η(s) ∈ [1,∞) and c(s) is

homogeneous of order 1/η(s).

In applications, spatial extreme value theory can be linked to multivariate extreme

value theory through the fact that spatial processes are usually measured at a finite

set of locations. However, generic multivariate models do not take into account the

additional structure arising from spatial features of the domain. Statistical models for

processes, in contrast, make use of geographical information to construct structured,

low-dimensional parametric models (see, e.g., Engelke and Ivanovs, 2021).

Similarly to max-stable distributions in (2.3), max-stable processes play an impor-
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tant role in modeling spatial extremes. The stochastic process Z = {Z(u) : u ∈ T }
is called max-stable if all its finite dimensional distributions are max-stable, which

implies in particular that for each pair s = (u, u′), the bivariate margin (Z(u), Z(u′))

satisfies (2.3) with stable tail dependence function L(s). Hence (2.7) follows for any

max-stable process Z for which (Z(u), Z(u′)) are not independent for all u, u′ ∈ T .

Brown–Resnick processes (Brown and Resnick, 1977) provide an important sub-

class of max–stable processes. A Brown–Resnick process B = {B(u) : u ∈ T } is

parametrized by a variogram function γ : T 2 → R+, and any pair (B(u),B(u′))
is a bivariate Hüsler–Reiss distribution with parameter λ =

√
γ(u, u′)/2 (Hüsler

and Reiss, 1989). Parametric models can be constructed by imposing a parametric

form for γ. An example when T ⊂ Rd is the fractal family of variograms given by

γ(s) = (∥s1 − s2∥/β)α, where s = (s1, s2), ∥ · ∥ is the Euclidean norm and α ∈ (0, 2],

β > 0 are the model parameters (Kabluchko et al., 2009). We next discuss two classes

of processes for which (2.7) holds.

Example 2.4 (Domain of attraction of max-stable processes). A process Y = {Y (u) :

u ∈ T } is in the max-domain of attraction of the max-stable process Z if there exist

sequences of continuous functions an, bn : T → R such that

{ max
i=1,...,n

Yi(·)− an(·)}/bn(·)⇝ Z(·), n→ ∞ (2.8)

for i.i.d. copies Y1, Y2, ... of the process Y where weak convergence takes place in the

space of continuous functions on T equipped with the supremum norm; see de Haan

et al. (2001) and Chapter 9 of de Haan and Ferreira (2006) for the special case

T = [0, 1].

(2.8) implies that any pair (Y (u), Y (u′)) with u ̸= u′ ∈ T is in the max-domain of

attraction of the pair (Z(u), Z(u′)). If every such pair is not independent, (2.7) holds

for all s = (u, u′) by the discussion in Example 2.1.

While max-stable processes allow for flexible spatial dependence structures, they

can only be used as models for asymptotic dependence. This often violates the

characteristics observed in real data, especially for locations u, u′ ∈ T that are far

apart. To model data in such cases, asymptotically independent spatial models have

been constructed that satisfy (2.7) and where the residual tail dependence coefficients

η(s) vary with the distance between the pair s of locations. Most of the models

are identifiable from the bivariate margins so that statistical methods for c(s) will

provide estimators for spatial tail dependence parameters; see Section 2.3.3 for the

methodology. A broad class of asymptotically independent stochastic processes are

the inverted max-stable processes (Wadsworth and Tawn, 2012).
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Example 2.5 (Inverted max-stable processes). Let Z = {Z(u) : u ∈ T } be a process

with max-stable dependence, uniform margins and bivariate tail dependence functions

L(s). The process Y = {1 − Z(u) : u ∈ T } is called inverted max-stable. For a

pair s ∈ T 2, assuming that L(s) satisfies the smoothness condition mentioned in

Example 2.2, Y satisfies (2.7) with

q(s)(t) = tL
(s)(1,1), c(s)(x, y) = xL̇

(s)
1 (1,1)yL̇

(s)
2 (1,1),

so that η(s) = 1/L(s)(1, 1) is a (usually non-constant) function on T 2. In particular, if

a Brown–Resnick process is parametrized by a variogram function γ : T 2 → R+ then

the corresponding inverted Brown–Resnick process has 1/η(s) = 2Φ(
√
γ(s)/2).

2.3 Estimation

In this section we present the proposed estimators. First, we recall the non-parametric

estimator of a survival tail function from Draisma et al. (2004) in Section 2.3.1. Using

this as building block, we construct M-estimators for bivariate survival tail functions

(Section 2.3.2) and leverage those estimators to introduce methodology for spatial tail

estimation (Section 2.3.3).

2.3.1 Non-parametric estimators of survival tail functions

Recall that (X, Y ) is a random vector with joint distribution function F that satisfies

(2.2), and assume that its marginal distribution functions F1 and F2 are continuous.

Denoting by Q the joint distribution function of (1 − F1(X), 1 − F2(Y )), we can

rephrase (2.2) as

Q(tx, ty)

q(t)
= c(x, y) +O(q1(t)), x, y ∈ [0,∞), (2.9)

for some function q1(t) → 0 as t → 0. Suppose that (X1, Y1), . . . , (Xn, Yn) are

independent samples from F . Since F1, F2 are unknown, the observations (1 −
F1(Xi), 1 − F2(Yi)) are not available and can not be used to construct a feasible

estimator of Q. A typical solution to this problem is to replace Fj by its empirical

counterpart F̂j, which leads to the estimator

Q̂n(x, y) :=
1

n

n∑
i=1

1
{
nF̂1(Xi) ≥ n+ 1− ⌊nx⌋, nF̂2(Yi) ≥ n+ 1− ⌊ny⌋

}
; (2.10)
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see Huang (1992); Drees and Huang (1998); Einmahl et al. (2008, 2012) among others

for related approaches in the estimation of stable tail dependence functions.

Given Q̂n and the expansion in (2.9), an intuitive plug-in estimator of the function

c is given by

ĉn(x, y) =
Q̂n (kx/n, ky/n)

q(k/n)
, (2.11)

where we set t = k/n in (2.9) for an intermediate sequence k = kn such that

k → ∞, k/n→ 0. Note, however, that this estimator is infeasible under asymptotic

independence since the function q is in general unknown. A simple remedy is to recall

that we considered the normalization c(1, 1) = 1 and construct a ratio type estimator

c̃n(x, y) :=
ĉn(x, y)

ĉn(1, 1)
=
Q̂n (kx/n, ky/n)

Q̂n (k/n, k/n)
(2.12)

to cancel out the unknown scaling factor q(k/n). This leads to a fully non-parametric

estimator of c, which is interesting in its own right. Some comments on the asymptotic

properties of this estimator will be provided in Section 2.4.1.

Remark. In practice, and especially in a spatial context, it is sometimes appropriate to

select directly the effective number of observations used for estimating c (Wadsworth

and Tawn, 2012). This can be achieved by selecting k = k̂ such that nQn(k̂/n, k̂/n) =

m for a given value m. This leads to a data-dependent parameter k̂ which will also be

covered by our theory.

2.3.2 M-estimation in (bivariate) parametric model classes

While the non-parametric estimators from the previous section possess attractive

theoretical properties, they have certain practical drawbacks. For any finite sample

size n they are neither continuous nor homogeneous, hence they are not admissible

survival tail functions. Additionally, it is difficult to use purely non-parametric

estimators in spatial settings. A solution to this problem, which also yields easily

interpretable estimators, is to fit parametric models.

In what follows, assume that c belongs to a family {cθ : θ ∈ Θ}, where Θ ⊆
Rp and the true parameter θ0 ∈ Θ is unknown. Our aim is to leverage the non-

parametric estimators from Section 2.3.1 to construct an estimator for θ0. For stable

tail dependence functions which are only informative under asymptotic dependence

such a program was carried out in Einmahl et al. (2008, 2012). A direct application
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of the corresponding ideas in our setting would be to estimate θ through

θ̆ := arg min
θ∈Θ

∥∥∥∫
[0,T ]2

g(x, y)cθ(x, y)dxdy −
∫
[0,T ]2

g(x, y)c̃n(x, y)dxdy
∥∥∥,

for an integrable vector-valued weight function g : R2 → Rq, where ∥ · ∥ denotes the

Euclidean norm. However, as we will discuss in Remark 2.4.1, the use of c̃n would

place unnecessarily strong assumptions on the function c in the case of asymptotic

dependence. Hence we propose to consider the following alternative approach. Define

Ψ∗
n(θ, ζ) := ζ

∫
[0,T ]2

g(x, y)cθ(x, y)dxdy −
∫
[0,T ]2

g(x, y)Q̂n(kx/n, ky/n)dxdy (2.13)

and let

(θ̂n, ζ̂n) := arg min
θ∈Θ,ζ>0

∥Ψ∗
n(θ, ζ)∥. (2.14)

To understand the rationale of this approach, note that ĉn(x, y) is proportional to

Q̂n(kx/n, ky/n) but the proportionality constant involves q and is thus unknown. We

thus essentially propose to add this unknown normalization factor as an additional

scale parameter ζ. More precisely, write µL for the Lebesgue measure on [0, T ]2, let

Ψn(θ, σ) = σ

∫
gcθdµL −

∫
gĉndµL,

and note that Ψ∗
n and Ψn are linked through Ψ∗

n(θ, ζ) = q(k/n)Ψn(θ, ζ/q(k/n)). Thus

(θ̂n, ζ̂n) minimizes ∥Ψ∗
n∥ if and only if (θ̂n, ζ̂n/q(k/n)) minimizes ∥Ψn∥. Furthermore,

under suitable assumptions on g and Θ we have σ
∫
gcθdµL =

∫
gcθ0dµL if and only if

θ = θ0 and σ = 1. Hence, if ĉn is close to cθ0 , it is expected that θ̂n will be close to θ0

and that ζ̂n/q(k/n) will be approximately 1.

Note that (2.13) only involves an integral of Q̂n while c̃n also involves point-wise

evaluation of this function. Since integration acts as smoothing, it can be expected

that studying Ψ∗
n will require less regularity conditions than working with θ̆; see

Section 2.4.1 for additional details.

2.3.3 Parametric estimation for spatial tail models

In this section, we show how the bivariate estimation procedures discussed earlier

can be leveraged to obtain two different estimators for parametric spatial models,

which can include both asymptotic dependence and independence. Assume that

we observe n independent copies Y1, . . . , Yn of a spatial process Y at a finite set of

locations u1, . . . , ud ∈ T . Denote the corresponding observations by X1, . . . , Xn where

Xi = (X
(1)
i , . . . , X

(d)
i ) := (Yi(u1), . . . , Yi(ud)) are independent copies of the random
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vector X = (X(1), . . . , X(d)) := (Y (u1), . . . , Y (ud)) ∈ Rd; see Einmahl et al. (2016) for

a similar framework.

Let P denote the set of all subsets of {1, . . . , d} of size 2 interpreted as ordered

pairs, so that elements of P will take the form s = (s1, s2) with s1 < s2. In what

follows, we will need to repeatedly make use of vectors x ∈ R|P| that are indexed by

all pairs s ∈ P . For such vectors we will assume that the pairs in P are ordered in a

pre-specified order and will write x(s) for the entry of the vector x that corresponds to

pair s.

Assume that for each pair s the random vector (X(s1), X(s2)) satisfies (2.9) with scale

function q(s) and survival tail function c(s). Following the ideas laid out in Section 2.3.1,

define Q̂
(s)
n as in (2.10) but based on the bivariate observations (X

(s1)
i , X

(s2)
i ), i =

1, . . . , n. We now discuss two parametric estimators for the functions c(s).

Assume that we start with a parametric model {cθ : θ ∈ Θ̃}, Θ̃ ⊆ Rp̃, for bivariate

survival tail functions and that each c(s) falls in this class. This implies that Θ̃ can

be linked to a spatial parameter space Θ ⊆ Rp through the relations c(s) = ch(s)(ϑ0),

where h(s) : Θ → Θ̃ for each pair s. To make this idea more concrete, consider the

following example, which we will revisit in Sections 2.5.2 and 2.6.

Example 2.6. If the process Y is an inverted Brown–Resnick process on R2 (see

Example 2.5) then X has an inverted Hüsler–Reiss distribution and the bivariate

survival tail functions are of the form c(s)(x, y) = (xy)θ
(s)
, for some θ(s) ∈ (1/2, 1).

This determines the parametric class Θ̃. A more specific model of Brown–Resnick

processes corresponds to the sub-family of fractal variograms (Kabluchko et al., 2009;

Engelke et al., 2015), where

θ(s) = h(s)((α, β)) = Φ

(
(∥us1 − us2∥/β)α/2

2

)
, s ∈ P , (2.15)

where uj ∈ R2 is the coordinate of the location j; see Section 2.6 for more motivation of

this particular parametrization. The global parameter ϑ thus takes the form ϑ = (α, β)

and Θ = (0, 2]× (0,∞).

Given the setting above, we can thus compute parametric estimators θ̂
(s)
n , s ∈ P,

by the methods for bivariate estimation discussed in Section 2.3.2, i.e., (θ̂
(s)
n , ζ̂

(s)
n ) is

the minimizer of
∥∥Ψ∗(s)

n (θ, ζ)
∥∥, where Ψ

∗(s)
n is defined as Ψ∗

n in (2.13) with Q̂
(s)
n and an

intermediate sequence k(s) replacing Q̂n and k. We obtain an estimator of the spatial

parameter by least squares minimization,

ϑ̂n := arg min
ϑ∈Θ

∑
s∈P

∥∥∥h(s)(ϑ)− θ̂(s)n

∥∥∥2 . (2.16)
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As an alternative, one may use the relations h(s) between the spatial and bivariate

parameters and minimize all the objective functions Ψ
∗(s)
n simultaneously, leading to

the estimator

(ϑ̃n, ζ̃n) := arg min
ϑ∈Θ,ζ∈R|P|

+

∑
s∈P

∥∥∥Ψ∗(s)
n (h(s)(ϑ), ζ(s))

∥∥∥2, (2.17)

A theoretical analysis of the estimators ϑ̂n and (ϑ̃n, ζ̃n) is provided in Theorem 2.5.

We further remark that the computational complexity of the proposed estimators is

much lower than that of methods based on full likelihood and it compares favorably

to pairwise likelihood. Additional details regarding the latter point can be found in

Section 2.11.

Remark. At first glance the minimization problem in (2.17) seems to be computationally

intractable since it contains |P|+ dim(Θ) parameters and since |P| can be very large

even for moderate dimension d. However, a closer inspection reveals that for given

ϑ, partially minimizing the objective function in (2.17) over ζ ∈ R|P|
+ has the exact

solution

ζ̂(s)n (ϑ) =

∑q
j=1

∫
gj(x, y)Q̂

(s)
n (k(s)x/n, k(s)y/n)dxdy∑q

j=1

∫
gj(x, y)ch(s)(ϑ)(x, y)dxdy

,

whenever the right-hand side is positive for all s. This is satisfied if for instance g

is positive everywhere and each Q̂
(s)
n is based on at least one data point. Thus only

numerical optimization over ϑ, which is usually low-dimensional, is required.

2.4 Theoretical results

We now present our main results on the asymptotic distributions of the various

estimators introduced in Section 2.3. First, functional central limit theorems are

stated for ĉn, followed by our main result on the bivariate M-estimator. Finally,

asymptotic normality of the processes ĉ
(s)
n and of the two parametric estimators in the

spatial setting is established. The proofs of all main results are deferred to Section 2.7.

2.4.1 The bivariate setting

All results in this section will be derived under the following fundamental assumption.

Condition 2.1. (i) (2.9) holds uniformly on S+ = {(x, y) ∈ [0,∞)2 : x2 + y2 = 1}
with a function q1(t) = O(1/ log(1/t)) and the function q is such that χ :=

limt↓0 q(t)/t ∈ [0, 1] exists.

(ii) As n→ ∞, m = mn := nq(k/n) → ∞ and
√
mq1(k/n) → 0.
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We note that in the proofs, (2.9) is required to hold locally uniformly on [0,∞)2,

but by Lemma 2.2 uniformity on S+ implies uniformity over compact subsets of

[0,∞)2. Condition 2.1(ii) is a standard assumption that makes certain bias terms

negligible. It is not a model assumption; under Condition 2.1(i), there always exists

a sequence k such that Condition 2.1(ii) is satisfied and thus all of the following

discussion will focus on Condition 2.1(i). Notably and in contrast to most of the

existing literature involving non-parametric estimation, Condition 2.1 does not assume

any differentiability of the function c. In fact, our proofs show that all the regularity

required on c can be derived from (2.9). Considering Section 2.3.1, it is possible to

use a data-dependent value k̂. In following results, when this is done, we will assume

that there is an unknown sequence k that satisfies Condition 2.1(ii), that m is defined

as therein, and that k̂ is chosen so that nQ̂n(k̂/n, k̂/n) = m.

We next discuss this condition in the examples introduced in Section 2.2.1. Proofs

for the claims in the examples below can be found in Sections 2.9 and 2.10.

Example 2.7 (Example 2.1, continued). Most of the literature on asymptotic analysis

of estimators of the stable tail dependence function L or related quantities under

domain of attraction conditions makes some version of the following assumption

1

t
P (F1(X) ≥ 1− tx and F2(Y ) ≥ 1− ty)−R(x, y) = O(q̃1(t)) x, y ∈ [0,∞);

(2.18)

for a non-vanishing function R on [0,∞)2 where q̃1(t) = o(1), see for instance condition

(C2) in Einmahl et al. (2008) or the discussion in Bücher et al. (2019). A simple

computation involving the inclusion-exclsion formula further shows that this is equiv-

alent to assuming that convergence in (2.1) takes place with rate O(q̃1(t)) and that

L(x, y) = x+ y −R(x, y). Clearly (2.18) implies Condition 2.1(i) with q(t) = tR(1, 1),

c(x, y) = R(x, y)/R(1, 1) and q1(t) = q̃1(t).

Example 2.8 (Example 2.2, continued). Let (X, Y ) be a bivariate inverted max-stable

distribution and assume that there exists a constant C <∞ such that for all u, v > 0,∣∣∣L(1 + u, 1 + v)− L(1, 1)− L̇1(1, 1)u− L̇2(1, 1)v
∣∣∣ ≤ C

(
u2 + v2

)
,

where L̇j represent the directional partial derivatives of L from the right. In particular,

it suffices for L to be twice differentiable. Then the random vector (X, Y ) satisfies

Condition 2.1(i) with q(t) = tL(1,1), c(x, y) = xL̇1(1,1)yL̇2(1,1) and q1(t) = 1/ log(1/t).

Moreover, L̇j(1, 1) ∈ (0, 1] and L̇1(1, 1) + L̇2(1, 1) = L(1, 1) ∈ (1, 2].

Example 2.9 (Example 2.3, continued). Let (X, Y ) be a random scale construction

as defined in (2.6) and set λ = αR/αW . Then (X, Y ) satisfies Condition 2.1(i) with
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functions q, c and q1 determined by λ as in Table 2.1 below.

Range of λ q(t) c(x, y) q1(t)

(0, 1) Kλt
2−λ

2(1−λ)µ− λ
2(1−λ)µ

1/λM1−1/λ t1/λ−1

1 Kλt
log(1/t)+log log(1/t) µ

(
1 + 1

2 log
(

M
µ

))
1/ log(1/t)

(1, 2) Kλt
λ λ

2(λ−1)µM
λ−1 − 2−λ

2(λ−1)µ
λ t(λ−1)∧(2−λ)

2 Kλt
2 log(1/t) µM 1/ log(1/t)

(2,∞) Kλt
2 µM tλ−2

Table 2.1: Tail expansion of the random scale model in (2.6), here we set µ := x ∧ y,M := x ∨ y,
and Kλ is a positive constant given in (2.53).

Asymptotic theory for non-parametric estimators

In this section we consider the estimator ĉn from (2.11). Since the process convergence

results differ under asymptotic dependence and independence, we discuss these settings

separately. Our first result deals with asymptotic independence.

Theorem 2.1 (Asymptotic normality of ĉn under asymptotic independence). Assume

Condition 2.1. Then under asymptotic independence, i.e., when χ = 0,

Wn :=
√
m(ĉn − c)⇝ W,

in ℓ∞([0, T ]2), for any T <∞. Here, W is a centered Gaussian process with covariance

structure given by E [W (x, y)W (x′, y′)] = c(x∧ x′, y ∧ y′). The same remains true if k

is replaced by k̂ as described after Condition 2.1.

Note that process convergence of the estimator c̃n from (2.12) can be obtained from

the above result through a straightforward application of the functional delta method.

This will not be needed in the theory for M-estimators in the next section and details

are omitted for the sake of brevity.

Asymptotic properties of ĉn were considered in Draisma et al. (2004). However,

the proof of the corresponding result (Lemma 6.1) in the latter reference makes the

additional assumption that the partial derivatives of c exist and are continuous on

[0, T ]2 (cf. Peng, 1999, Theorem 2.2). In contrast, we are able to show that no condition

on existence or continuity of partial derivatives is required. This is a considerable

strengthening of the result which further allows to handle many interesting examples

that were not covered by the results of Draisma et al. (2004). Indeed, both the

popular class of inverted max-stable distributions in Example 2.2 and the random

scale construction in Example 2.3 lead to functions c that fail to have continuous

or even bounded partial derivatives. Before moving on to discussing results under

asymptotic dependence, we briefly comment on some of the main ideas of the proof.
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Remark (Main ideas of the proof of Theorem 2.1). The proof relies on the decomposition

ĉn(x, y)−c(x, y) =
{Qn(

kun(x)
n

, kvn(y)
n

)

q(k/n)
−c(un(x), vn(y))

}
+
(
c(un(x), vn(y))−c(x, y)

)
,

where

un(x) :=
n

k
Un,⌊kx⌋ and vn(y) :=

n

k
Vn,⌊ky⌋,

and Un,k and Vn,k denote the kth order statistics of 1− F1(X1), . . . , 1− F1(Xn) and

1− F2(Y1), . . . , 1− F2(Yn), respectively with Un,0 = Vn,0 = 0. The core difficulty is to

show that the difference c(un(x), un(y))−c(x, y) is negligible. Under the assumption of

the existence and continuity of partial derivatives of c on [0, T ]2 made in Draisma et al.

(2004) this is a direct consequence of the fact that under asymptotic independence
√
m(un(x) − x) = oP (1). Dropping this assumption considerably complicates the

theoretical analysis. The proof strategy is to derive bounds on increments of c(x, y)

for x, y close to 0 where the partial derivatives of c can become unbounded (see

Lemmas 2.7 and 2.8) and to combine those bounds with subtle results on weighted

weak convergence of un(x)− x as a process in x; see Lemma 2.3 where we essentially

leverage the findings of Csörgő and Horváth (1987).

We next turn to the case of asymptotic dependence. Results on convergence of

ĉn in the space ℓ∞ are well known under this regime; they are equivalent to similar

results about estimated stable tail dependence functions (cf. Huang, 1992). However,

they require the existence and continuity of partial derivatives of L or, equivalently, c.

As shown in Einmahl et al. (2008, 2012), the latter condition is restrictive and in fact

not necessary to derive asymptotic normality of M-estimators.

The treatment of M-estimators in Einmahl et al. (2008, 2012) involves a direct

analysis of certain integrals without using process convergence in ℓ∞([0, T ]d). While

this approach could be transferred to our setting, we will instead follow a strategy

put forward in Bücher et al. (2014) and prove weak convergence of ĉn with respect to

the hypi-metric introduced therein. This approach will turn out to generalize much

more easily when we deal with spatial estimation problems. Convergence with respect

to this metric holds without any assumptions on the existence of partial derivatives

and is sufficiently strong to guarantee convergence of integrals which is needed for the

analysis of M-estimators.

Let ċ1 denote the partial derivative of c with respect to x from the left and ċ2 denote

its partial derivative with respect to y from the right. Under asymptotic dependence,

c(x, y) ∝ x + y − L(x, y) is concave since L is convex (de Haan and Ferreira, 2006,

Proposition 6.1.21), hence those directional partial derivatives exist everywhere on

(0,∞)2, by Theorem 23.1 of Rockafellar (1970). The definition can be extended to
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[0,∞)2 be setting ċ1(0, y) to be the derivative from the right instead of from the left.

To describe the limiting distribution, recall that χ = limt→0 q(t)/t ∈ [0, 1] is positive

only in the case of asymptotic dependence. For (x, y), (x′, y′) ∈ [0,∞)2, define

Λ((x, y), (x′, y′)) =

c(x ∧ x
′, y ∧ y′) χc(x ∧ x′, y) χc(x, y ∧ y′)

χc(x ∧ x′, y′) χ(x ∧ x′) χ2c(x, y′)

χc(x′, y ∧ y′) χ2c(x′, y) χ(y ∧ y′)

 , (2.19)

and let (W,W (1),W (2)) be an R3-valued, zero mean Gaussian process on [0,∞)2 with

covariance function Λ. Note that W is the limiting process in Theorem 2.1, that

W (1)(x, y) is constant in y and that W (2)(x, y) is constant in x.

Theorem 2.2 (Asymptotic normality of ĉn under asymptotic dependence). Assume

Condition 2.1. Then under asymptotic dependence, i.e., when χ > 0,

Wn ⇝ B := W − ċ1W
(1) − ċ2W

(2)

in (L∞([0, T ]2), dhypi), for any T <∞. Here, Wn is defined as in Theorem 2.1. The

same remains true if k is replaced by k̂ as described after Condition 2.1.

Note that weak convergence in the above theorem takes place in (L∞([0, T ]2), dhypi)

where L∞([0, T ]2) corresponds to equivalence classes of functions in ℓ∞([0, T ]2) with

respect to the hypi-(semi-)metric dhypi, see Bücher et al. (2014) for additional details.

The proof of Theorem 2.2 follows by adapting the arguments given in Bücher et al.

(2014) for the function L and builds on the fact that under asymptotic dependence the

function c is differentiable almost everywhere. Note however that, in contrast to similar

results in Bücher et al. (2014), our limiting process is stated without appealing to lower

semi-continuous extensions. This type of statement is inspired by the representation

of certain integrals in Einmahl et al. (2012) and is possible in the bivariate setting

due to concavity of c under asymptotic dependence. Additional comments on the

representation of the limiting process are given in Section 2.4.1 below.

Remark. In order to obtain asymptotic results for our M-estimator, weak convergence

of
∫
gWndµL to

∫
gBdµL is sufficient. Under asymptotic dependence, this is seen

to follow from Theorem 2.2 (see the proof of Theorem 2.3). However, this process

convergence result is not necessary. An approach that is used in Einmahl et al. (2012)

is to write an expression for the random vector
∫
gWndµL and directly work out its

weak limit. With this strategy, ċj may be defined as left or right derivatives without

problem as
∫
ċjW

(j)dµL will be unchanged. In contrast, proving weak hypi-convergence

of Wn to B makes our results more general and more easily generalized to the spatial

framework. The cost of doing so is that the directional derivatives ċj must be chosen
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in a specific way; see Lemma 2.9.

Remark. Recall that under asymptotic independence, process convergence of c̃n could

be obtained from Theorem 2.1 by a simple application of the delta method. This is

no longer the case in the general setting of Theorem 2.2 because weak convergence

with respect to the hypi-metric does not imply convergence of Wn(1, 1), unless the

limiting process B has sample paths which are a.s. continuous in (1, 1). The latter

happens only if the partial derivatives of c exist and are continuous in (1, 1). Under

this additional assumption convergence of c̃n with respect to the hypi-metric can be

obtained.

Asymptotic theory for bivariate M-estimators

Equipped with the process convergence tools from the previous section, we proceed to

analyze the M-estimator introduced in Section 2.3.2. Consistency is established by

standard arguments, and for the sake of brevity we do not state the corresponding

results here. In the present section, we focus on the asymptotic distribution. Define

the objective function Ψ : Θ× R+ → Ψ(Θ× R+) ⊆ Rq by

Ψ(θ, σ) := σ

∫
gcθ dµL −

∫
gc dµL. (2.20)

Clearly, Ψ(θ0, 1) = 0. In addition, assume that (θ0, 1) is a unique, well separated zero

of Ψ and let JΨ(θ, σ) denote the Jacobian matrix of Ψ for points (θ, σ) ∈ Θ × R+

where it exists.

Define Γ((x, y), (x′, y′)) as c(x ∧ x′, y ∧ y′) under asymptotic independence and as

(1,−ċ1(x, y),−ċ2(x, y))Λ((x, y), (x′, y′))(1,−ċ1(x′, y′),−ċ2(x′, y′))⊤

otherwise, where Λ is defined in (2.19). Recall from the previous section that these

directional derivatives always exist when χ > 0 since in this case c is concave. In fact,

Γ((x, y), (x′, y′)) is the covariance between W (x, y) and W (x′, y′) (under asymptotic

independence) or between B(x, y) and B(x′, y′) (under asymptotic dependence). Hence

in those two regimes,

A :=

∫
[0,T ]4

g(x, y)g(x′, y′)⊤Γ((x, y), (x′, y′))dxdydx′dy′ ∈ Rq×q

is the covariance matrix of the random vector
∫
gWdµL or

∫
gBdµL, respectively. We

are now ready to state the main result of this section: asymptotic normality of (θ̂n, ζ̂n),

which holds under both asymptotic dependence and independence.
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Theorem 2.3 (Asymptotic normality of θ̂n). Assume that Ψ has a unique, well

separated zero at (θ0, 1) and is differentiable at that point with Jacobian J := JΨ(θ0, 1)

of full rank p+ 1, p = dim(Θ). Further assume Condition 2.1. Then the estimators

(θ̂n, ζ̂n) defined in (2.14) satisfy

√
m
((
θ̂n,

nζ̂n
m

)
− (θ0, 1)

)
⇝ N(0,Σ)

where Σ := (J⊤J)−1J⊤AJ(J⊤J)−1. The same remains true if k is replaced by k̂ as

described after Condition 2.1.

While for simplicity the estimator is defined as an exact minimizer, the same result

can be obtained for an approximate minimizer. Precisely, it is obvious from the proof

of Theorem 2.3 that as long as Ψ∗
n(θ̂n, ζ̂n) = infθ,ζ Ψ

∗
n(θ, ζ)+oP (

√
m/n), the conclusion

still holds. Finally, recall that the coefficient of tail dependence η can be recovered

from the function c since the latter is homogeneous of order 1/η, and this relation

always holds. Therefore, inside the assumed parametric model, η can be represented

as a function η(θ). The asymptotic distribution of the resulting estimator can be

obtained by a direct application of the delta method and details are omitted for the

sake of brevity.

2.4.2 The spatial setting

In this section we assume the framework of Section 2.3.3 and establish asymptotic

properties of the estimators therein. For each pair s ∈ P , let k(s) be an intermediate

sequence and define

ĉ(s)n (x, y) :=
Q̂

(s)
n

(
k(s)x/n, k(s)y/n

)
q(s)(k(s)/n)

.

From Section 2.4.1, the asymptotic distribution of ĉ
(s)
n is known under suitable con-

ditions. However, as the spatial estimators ϑ̂n and ϑ̃n are based on all pairs, a joint

convergence statement about all processes ĉ
(s)
n is necessary. This will require an

additional assumption which we present and discuss next.

Let F (1), . . . , F (d) denote the marginal distribution functions of the random vector

X, which itself consists of the spatial process Y evaluated at d different locations. In

order to obtain the asymptotic covariance between different processes ĉ
(s)
n , we need to

ensure that certain multivariate tail probabilities converge. Partition the set P into PI
and PD, consisting of the asymptotically independent and asymptotically dependent

pairs, respectively. In the formulation of the following assumption, s = (s1, s2) and

si = (si1, s
i
2) are used to denote pairs. For brevity, xi = (xi1, x

i
2) is also used to denote
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a point in [0,∞)2.

Condition 2.2. For every s ∈ P , (X(s1), X(s2)) satisfies Condition 2.1(i) with functions

q(s), q
(s)
1 , c(s) and χ(s) := limt↓0 q

(s)(t)/t exists. Intermediate sequences k(s) are chosen

so that m(s) := nq(s)(k(s)/n) → ∞ and
√
m(s)q

(s)
1 (k(s)/n) → 0. For pairs s1, s2 ∈ P,

points x1, x2 ∈ [0,∞)2 and sets J of two-dimensional vectors with entries in {1, 2}, let

Γn
(
s1, s2, x1, x2; J

)
=

n√
m(s1)m(s2)

P
(
F (sij)(X(sij)) ≥ 1−

k(s
i)xij
n

, (i, j) ∈ J
)
.

We assume that the sequences k(s) are chosen such that the limits

Γ(s1,s2)(x1, x2) := lim
n→∞

Γn
(
s1, s2, x1, x2; {(1, 1), (1, 2), (2, 1), (2, 2)}

)
, s1, s2 ∈ P ,

Γ(s1,s2,j)(x1, x2) := χ(s2) lim
n→∞

Γn
(
s1, s2, x1, x2; {(1, 1), (1, 2), (2, j)}

)
, s1 ∈ P , s2 ∈ PD,

Γ(s1,j1,s2,j2)(x1, x2) := χ(s1)χ(s2) lim
n→∞

Γn
(
s1, s2, x1, x2; {(1, j1), (2, j2)}

)
, s1, s2 ∈ PD,

exist for all j, ji ∈ {1, 2}, and that the convergence is locally uniform over x1, x2 ∈
[0,∞)2.

We next discuss the above condition in three special cases of particular interest. The

first two are processes in the domain of attraction of max-stable processes and inverted

max-stable processes. The third one is a mixture process appearing in Wadsworth

and Tawn (2012), which can have asymptotically dependent and independent pairs

simultaneously.

Example 2.10 (Example 2.4, continued). If Y is in the max-domain of attraction

of a max-stable process, then X is in the max-domain of attraction of a max-stable

distribution G on Rd with stable tail dependence function

L(x1, . . . , xd) := lim
t↓0

1

t
P
(
F (1)(X(1)) ≥ 1− tx1 or . . . or F (d)(X(d)) ≥ 1− txd

)
, xj ≥ 0;

see (2.1). If moreover the convergence is locally uniform over (x1, . . . , xd) ∈ [0,∞)d

and if every pair is asymptotically dependent, then Condition 2.2 holds. Note that this

is automatically satisfied if Y itself is max-stable. The sequences k(s) can be chosen

all equal to k, say, and for every pair s, m(s)/k → χ(s) > 0. The sequences m(s) can

also be chosen all asymptotically equivalent to m, say, by choosing k(s) = m/χ(s). The

limiting covariance terms can all be deduced from L by straightforward calculations.

Example 2.11 (Example 2.5, continued). If Y is an inverted max-stable process,

then X has an inverted max-stable distribution, and we assume that the associated

stable tail dependence function L is component-wise strictly increasing. The latter is
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trivially satisfied if X has a positive density. Then if all the pairwise functions L(s)

satisfy the quadratic expansion introduced in Example 2.8, Condition 2.2 is satisfied

and the sequences k(s) can be chosen so that the m(s) are all equal, that is, for every

pair s ∈ P, m(s) = m for some intermediate sequence m. Here, PD is empty so the

only required covariance terms are (see Section 2.9)

Γ(s1,s2)(x1, x2) =

c(s)(x11 ∧ x21, x12 ∧ x22), s1 = s2 = s,

0, s1 ̸= s2
.

For instance, any inverted Brown–Resnick process (or rather the implied inverted

d-dimensional Hüsler–Reiss distribution corresponding to the d observed locations)

satisfies Condition 2.2 as long as the aforementioned d-variate distribution has a

density. The latter can easily be checked (e.g., Engelke and Hitz, 2020, Corollary 2).

Example 2.12 (Wadsworth and Tawn (2012), Section 4 ). Let Z be a max-stable

process and Z ′ be an inverted max-stable process, both with unit Fréchet margins.

Suppose that Z ′ satisfies the monotonicity condition stated in Example 2.11, and addi-

tionally that none of its pairwise distributions (Z ′(u1), Z
′(u2)) is perfectly independent.

Let a ∈ (0, 1) and define the process Y by

Y (u) := max{aZ(u), (1− a)Z ′(u)}.

Then Y also has unit Fréchet margins. If Z becomes independent at a certain spatial

distance, the process Y transitions between asymptotic dependence and independence

at that distance. An instance of such a max-stable process Z is found in the second

example after Theorem 1 of Schlather (2002), assuming that the Radius R of the

random disks is bounded (see also Davison et al., 2012a, eq. (23) and the discussion

that precedes).

The process Y can be shown to satisfy Condition 2.2 if the sequences k(s) are chosen

so that the m(s) are all equal. The terms Γ(s1,s2), Γ(s1,s2,j) and Γ(s1,j1,s2,j2) are mostly

determined by the process Z, as in Example 2.10; see Section 2.9 for details.

Joint distribution of non-parametric estimators

The joint limiting behavior of the processes ĉ
(s)
n relies on

(
(W (s))s∈P , (W

(s,j))s∈PD,j∈{1,2}
)
,

a collection of centered Gaussian processes on [0,∞)2. The covariance between

W (s)(x, y) and W (s′)(x′, y′) is given by Γ(s,s′)((x, y), (x′, y′)), the covariance between

W (s)(x, y) and W (s′,j)(x′, y′) takes the form Γ(s,s′,j)((x, y), (x′, y′)), and the covariance

between W (s,j)(x, y) and W (s′,j′)(x′, y′) is equal to Γ(s,j,s′,j′)((x, y), (x′, y′)). For s ∈ PI ,
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let B(s) = W (s) and for s ∈ PD, let

B(s) = W (s) − ċ
(s)
1 W (s,1) − ċ

(s)
2 W (s,2),

where ċ
(s)
j are defined similarly to ċj in Section 2.4.1.

Theorem 2.4 (Asymptotic normality of ĉ
(s)
n ). Assume Condition 2.2. Then(

W (s)
n

)
s∈P :=

(√
m(s)(ĉ(s)n − c(s))

)
s∈P ⇝

(
B(s)

)
s∈P

in the product space (L∞([0, T ]2), dhypi)
|P|
, for any T < ∞. The same remains true

if each k(s) is replaced by the data-dependent sequence k̂(s) as described after Condi-

tion 2.1.

The preceding result can be applied in all generality as long as the four-dimensional

tails of the spatial process of interest are sufficiently smooth. The admissible settings

include, but are far from limited to, Examples 2.10 to 2.12.

According to Bücher et al. (2014), convergence in the hypi-metric is equivalent to

uniform convergence when the limit is a continuous function. The process B(s) clearly

has almost surely continuous sample paths under asymptotic independence, as well

as under asymptotic dependence if the partial derivatives of c exist everywhere and

are continuous. It follows that in those cases W
(s)
n converges in (ℓ∞([0, T ]2), ∥ · ∥∞).

In fact, one may replace the product space in the result above by ⊗s∈PD(s), where

D(s) represents either ℓ∞([0, T ]2) equipped with the supremum distance (if s ∈ PI or
c has continuous partial derivatives) or L∞([0, T ]2) equipped with the hypi-metric

(otherwise). In particular, for processes where every pair is asymptotically independent

such as inverted max-stable processes, the hypi-metric can be replaced by the supremum

distance everywhere.

Asymptotics for parametric estimators

We now show how Theorem 2.4 leads to asymptotic results for the parametric estimators

ϑ̂n and ϑ̃n introduced in (2.16) and (2.17). Recall the setting of Section 2.3.3, and in

particular the functions h(s) : Θ → Θ̃ and the relation c(s) = ch(s)(ϑ0). Similarly to the

bivariate setting, define

Ψ(s) : Θ̃× R+ → Rq, Ψ(s)(θ, σ) = σ

∫
gcθdµL −

∫
gc(s)dµL.

In the bivariate setting, we required Ψ to be differentiable and have a unique

well-separated zero. In the spatial setting we need a comparable assumption.
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Condition 2.3. For every pair s ∈ P, the functions Ψ(s) and h(s) are continuously

differentiable at the points (h(s)(ϑ0), 1) and ϑ0, respectively, with Jacobian matrices

JΨ(s)(h(s)(ϑ0), 1) and Jh(s)(ϑ0) of full ranks p̃+ 1 and p. Additionally (i) or (ii) holds.

(i) The functions Ψ(s) and ϑ 7→ (h(s)(ϑ)− h(s)(ϑ0))s∈P have a unique, well separated

zero at the points (h(s)(ϑ0), 1) and ϑ0, respectively.

(ii) The function (ϑ, σ) 7→ (Ψ(s)(h(s)(ϑ), σ(s)))s∈P as a function on Θ × R|P|
+ has a

unique, well separated zero at the point (ϑ0, 1, . . . , 1).

Assuming both parts of Condition 2.3, we now introduce the notation that is needed

to define the limiting covariance matrices of the two estimators. In the following,

elements of a vector x ∈ Rq|P| are ordered by pair s ∈ P first, and then by dimension

j ∈ {1, . . . , q}. The same convention is used when ordering the rows or columns of a

matrix.

Letting B(s) denote the limiting Gaussian processes appearing in Theorem 2.4,

consider the matrix A ∈ Rq|P|×q|P| with blocks of the form

A(s,s′) :=

∫
[0,T ]4

g(x, y)g(x′, y′)⊤Cov
(
B(s)(x, y);B(s′)(x′, y′)

)
dxdydx′dy′.

Let D ∈ Rp̃|P|×q|P| be a block-diagonal matrix with blocks given by

D(s) :=
[(
JΨ(s)(h(s)(ϑ0), 1)

⊤JΨ(s)(h(s)(ϑ0), 1)
)−1

JΨ(s)(h(s)(ϑ0), 1)
⊤
]
1:p̃,1:q

∈ Rp̃×q,

(2.21)

where s ∈ P and [M ]1:p̃,1:q indicates the sub-matrix consisting of rows 1 to p̃ and

columns 1 to q of the matrixM . Define J1 ∈ Rp̃|P|×p by stacking the matrices Jh(s)(ϑ0),

s ∈ P, on top of each other. Denote by (e(s))⊤ the unit vector in R|P| with a one

in the position corresponding to the pair s and let J2 ∈ Rq|P|×(p+|P|) be obtained by

stacking the matrices

JΨ(s)(h(s)(ϑ0), 1)

[
Jh(s)(ϑ0) 0

0 e(s)

]
∈ Rq×(p+|P|), s ∈ P ,

on top of each other. Finally, define

Σ1 = (J⊤
1 J1)

−1J⊤
1 DAD⊤J1(J

⊤
1 J1)

−1, Σ2 = (J⊤
2 J2)

−1J⊤
2 AJ2(J

⊤
2 J2)

−1.

Theorem 2.5 (Asymptotic normality of the estimators of ϑ). Assume Condition 2.2

and suppose that the sequences m(s) are all asymptotically equivalent to m, say. Then
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under Condition 2.3(i), the estimator defined in (2.16) satisfies

√
m
(
ϑ̂n − ϑ0

)
⇝ N(0,Σ1)

and under Condition 2.3(ii), the estimators defined in (2.17) satisfy

√
m
((
ϑ̃n,

nζ̃n
m

)
− (ϑ0, 1, . . . , 1)

)
⇝ N(0,Σ2),

where Σ1 and Σ2 are as above. The same remains true if each k(s) is replaced by

the data-dependent sequence k̂(s), based on the same sequence m, as described after

Condition 2.1.

The assumption of asymptotic equivalence of all m(s) can be substantially relaxed.

Otherwise, a simple way to satisfy it is to select one m and use data-driven sequences

k̂(s).

2.5 Simulations

2.5.1 Bivariate distributions

In this section we illustrate the performance of the proposed methodology for bivariate

data. We simulate samples from the bivariate vector (X +X ′, Y + Y ′), where (X, Y )

is the signal and (X ′, Y ′) is and independent noise vector. We consider three different

models for the bivariate distributions (X, Y ).

(M1) The inverted Hüsler–Reiss model from Example 2.2(i) with unit Fréchet margins,

whose corresponding class of functions c takes the form cθ(x, y) = (xy)θ where

θ ∈ (1/2, 1].

(M2) The inverted asymmetric logistic model from Example 2.2(ii) with fixed r = 2 and

unit Fréchet margins. We fit the full parametric model {cθ(x, y) = xθ1yθ2 : θ ∈ Θ},
where Θ := {(θ1, θ2) ∈ (0, 1]2 : θ1+θ2 > 1}, even though due to our choice of r the

only attainable parameters are approximately the square [0.7, 1]2; see Figure 2.4.

(M3) The random scale construction from Example 2.3 where we fix αW = 1 and vary

αR. The collection of possible functions c = cλ, λ ∈ (0, 2) is given in Table 2.1.

Figures 2.10 to 2.12 show realizations of models M1–M3 corresponding to different

parameter values and rescaled to unit exponential margins for illustration.

As a noise vector we simulate samples of (X ′, Y ′), where X ′ and Y ′ are independent

with Pareto distribution function 1− 1/x4, x ≥ 1. Note that this tail is lighter than

that of the marginal distributions in all three models; it can be shown that this

additive noise does not affect the functions q and c of (X, Y ).
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All of the results that follow are based on 1000 simulation repetitions and samples

of size n = 5000. In all the simulations, we use the same weight function (represented

by g in (2.13)), which we now describe. Consider the following rectangles: I1 := [0, 1]2,

I2 := [0, 2]2, I3 := [1/2, 3/2]2, I4 := [0, 1]× [0, 3] and I5 := [0, 3]× [0, 1]. The function

g : R2 → R5 is given by

g(x, y) :=
(
1 {(x, y) ∈ I1} /a1,θREF

, . . . ,1 {(x, y) ∈ I5} /a5,θREF

)⊤
(2.22)

where aj,θREF
:=
∫
Ij
cθREF

dµL and θREF is simply a reference point in the parameter

space that ensures that all components of g have comparable magnitude. In the

three models above, the reference points are 0.6, (0.6, 0.6) and 1, respectively. The

rectangles are chosen in order to capture various aspects of the function c: I3 contains

information about the unknown scale ζ (recall that we scale c so that c(1, 1) = 1).

The rectangles I1, I2 are geared towards determining homogeneity properties of c

since I2 = 2I1 and are especially useful for estimating η. The rectangles I4, I5 are

informative about asymmetry of the function c with respect to its arguments. Different

choices of the weight function would be possible, and the best choice will be different

for each model under consideration and even for each specific parameter value within

a given model class. Nevertheless, the aforementioned choice seems close to optimal

for all the models considered here. In Section 2.12, a sensitivity analysis is carried

out where we repeat the simulation study with different weight functions that are

constructed by considering only some of the rectangles I1, . . . , I5 instead of all five.

See also Einmahl et al. (2008, 2012) for a related discussion in the estimation of stable

tail dependence functions.

The inverted Hüsler–Reiss model (M1)

Figure 2.1 shows the effect of k on the estimation performance of θ̂n from (2.14) in

terms of absolute bias and root MSE for the three parameter values θ = 0.6, 0.75, and

0.9. We observe that for larger values of θ (or smaller values of η, corresponding to

more independence in the extremes) larger values of k lead to the best RMSE. This is

in line with our theory as, for fixed k, smaller η corresponds to smaller values of m

and hence larger asymptotic variance.
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Figure 2.1: Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of θ as a function

of k, based on 1 000 samples of size 5 000 from model M1 with parameter values 0.6, 0.75 and 0.9,

from left to right.

An analysis of θ̂n for a finer range of parameter values is provided in Figure 2.2.

Motivated by the findings in Figure 2.1 we fix k = 800; this choice leads to reasonable

performance across all parameter values. Overall the results are satisfactory, with a

more pronounced negative bias for smaller values of θ and more variance for increasing

θ.
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Figure 2.2: Box plots of the M-Estimators of θ based on 1 000 samples of size 5 000 for each parameter

value.

The inverted asymmetric logistic model (M2)

Figure 2.3 shows the impact of k on estimated parameter values for three different

choices of θ. Since here the parameter is two-dimensional, we consider (and estimate)

the Euclidean bias and RMSE of the estimator θ̂n, defined as ∥E[θ̂n− θ]∥ and (E∥θ̂n−
θ∥2)1/2, respectively.

Similarly to the pattern observed in Figure 2.1 we see that smaller values of η

necessitate larger values of k in order to achieve a good balance between bias and

variance.
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Figure 2.3: Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of θ as a function

of k, based on 1 000 samples of size 5 000 from model M2 with parameter θ equal to (0.72, 0.72),

(0.75, 0.91) and (0.91, 0.91), from left to right. In the original parametrization, the corresponding

values of (ν, ϕ) are (0.94, 0.94), (0.44, 0.94) and (0.31, 0.31), respectively.

Figure 2.4 shows the performance of the proposed M-estimator for a range of

different parameters (θ1, θ2) with Euclidean bias in the left panel and RMSE in the

right panel; the value k = 800 is fixed throughout. Since the relation (ν, ϕ) 7→ (θ1, θ2)

is not easily invertible, we selected a grid of values of (ν, ϕ) ∈ [0, 1]2, calculated all the

corresponding points θ and kept the values for which θj ≤ 0.95, j = 1, 2.

We observe that the estimators perform better for parameter values close to the

diagonal, with larger bias and variance for more asymmetric parameter values. The

overall estimation accuracy is reasonably good, with worst case RMSE values around

0.07.
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Figure 2.4: Absolute bias (left) and RMSE (right) of the M-estimator of θ = (θ1, θ2) as a function of

θ, based on 1 000 samples of size 5 000 from model M2.

The Pareto random scale model (M3)

Figure 2.5 shows the effect of k on the performance of our M-estimator λ̂n in terms of

absolute bias and root MSE for the three parameter values λ = 0.4, 1, and 1.6. We

notice that the estimator is considerably more biased at λ = 1 than at other parameter
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values. This is expected as, according to Table 2.1, the bias function q1 vanishes only

at a logarithmic rate when λ = 1, compared to a polynomial rate elsewhere. Moreover,

like in the other models, we observe that for more independent data (characterized by

larger λ), larger values of k are required to drive down the variance of the estimator.
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Figure 2.5: Absolute bias (solid lines) and RMSE (dashed lines) of the M-estimator of λ as a function

of k, based on 1 000 samples of size 5 000 from model M3 with parameter values 0.4, 1 and 1.6, from

left to right.

An analysis of λ̂n for a finer range of parameter values is provided in Figure 2.6.

Motivated by Figure 2.5 we fix k = 400, which approximately minimizes the maximal

RMSE. Overall the estimator is very precise for small values of λ, but incurs a bias

around λ = 0.8 where it struggles to distinguish between values slightly smaller and

slightly larger than 1. This phenomenon is not completely unexpected; a close look

at Table 2.1 reveals that cλ has almost (but not quite) a symmetry around the point

λ = 1, e.g. c0.8 is very similar in shape to c1.2. This point also corresponds to the

transition between asymptotic dependence and independence, which makes estimation

challenging.
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Figure 2.6: Box plots of the M-Estimators of λ based on 1 000 samples of size 5 000 for each parameter
value.
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2.5.2 Spatial models

In this section we illustrate the performance of the proposed methodology for spatial

data. The candidate class for cθ results from inverted Brown–Resnick processes with

fractal variograms (see Example 2.6) and takes the form

c
(s)
ϑ (x, y) = (xy)θ

(s)

, θ(s) = θ(∆(s);ϑ) := Φ
(1
2
(∆(s)/β)α/2

)
, s ∈ P , (2.23)

where ϑ = (α, β) ∈ (0, 2] × R+ and ∆(s) is the Euclidean distance between the two

locations in pair s (measured in units of latitude). Motivated by the data application

in the following section, the true parameter values are set as ϑ0 = (1, 3) and the values

for ∆(s) are obtained from 40 randomly sampled pairs of locations in that data set;

see Figure 2.14 for a histogram of the distances in this sample.

To evaluate the performance of our estimators we simulate 1000 independent

data sets, each of size 5000, of an inverted Brown–Resnick process with unit Fréchet

margins and fractal variogram from (2.15) with α = 1, β = 3. Following the bivariate

simulations, to each of the 40 components of the data we add an independent random

variable with Pareto distribution function 1 − 1/x4, x ≥ 1. Using the same weight

function g as in the bivariate simulations (see (2.22)), we compute the two estimators

introduced in (2.16) and (2.17). Since the performance of both estimators turns out

to be very similar, we only report results for the least squares estimator from (2.16)

here and defer all simulations for the estimator (2.17) to Section 2.12.

Following the discussion in Section 2.3.1, we fix a value m and select each k(s)

such that Q̂
(s)
n (k(s)/n, k(s)/n) = m. The first two panels of Figure 2.7 show the

absolute bias and RMSE of the estimators α̂ and β̂, respectively, as functions of

m ∈ {75, 100, . . . , 500}. We observe that the RMSE for both estimators is relatively

large across all values of m. Interestingly, this does not result in a bad performance in

estimating the function θ(·;ϑ). Indeed, the last panel of Figure 2.7 shows averaged

(over simulation runs) values for sup0≤∆≤3 |θ(∆; ϑ̂) − θ(∆;ϑ)| and indicates a good

overall performance; note that the observed values of ∆ are all smaller than 3 (see

Figure 2.14). This can be explained by the fact that different values of (α, β) can lead

to somewhat similar curves in the range of interest. This is further illustrated in the

left panel of Figure 2.8 where a random sample of 50 estimated functions θ(∆; ϑ̂) is

displayed.
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Figure 2.7: Left and middle columns: Bias (solid line) and RMSE (dotted line) of the estimators of

the two spatial parameters α (left) and β (middle) as a function of m. Right: Mean of the supremum

error sup0≤∆≤3 |θ(∆; α̂, β̂)− θ(∆;α, β)| as a function of m.

We conclude this section by fixing m = 150 and comparing the performance of

estimators for θ(s) based on a bivariate sample at a given distance and the spatial

estimator discussed above. Boxplots corresponding to five pairs of stations with

distances ∆(s) ≈ 0.5, 1, . . . , 2.5 are shown in the left panel of Figure 2.8. As expected

from the theory, using the spatial estimator is advantageous as it allows to combine

information from different distances and leads to a reduced variance.
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Figure 2.8: Left panel: Estimators of θ(∆) for 5 different distances. For each distance, bivariate

M-estimator θ̂
(s)
n (green) and spatial estimator θ(∆(s); α̂, β̂) (blue) based on the d = 40 locations.

Right panel: 50 sampled curves θ(·; α̂, β̂). Blue represents the true curve θ(·;α, β).

2.6 Application to rainfall data

In a data set introduced in Le et al. (2018), rainfall was measured daily from 1960 to

2009 at a set of 92 different locations in the state of Victoria, southeastern Australia,

for a total of n = 18 263 measurements. The conclusions in that paper are that an

asymptotically independent model is suitable. A subset of 40 locations, for a total of
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780 pairs, was randomly sampled; see the right panel of Figure 2.9. To the data at

those selected locations we fit the same tail model as in Section 2.5.2, given in (2.23).

The weight function g that we use is the same as before and as in Section 2.5.2, we

make use of Section 2.3.1 by fixing a value m and choosing each k(s) accordingly.

We set m = 400. The left panel of Figure 2.9 shows the 780 pairwise estimators

θ̂
(s)
n plotted against the distances ∆(s). Despite some estimates at the boundary of the

parameter space, the results do not provide much evidence for asymptotic dependence,

whereas all estimates are away from the boundary for distances of at least 0.3 units of

latitude, strongly suggesting asymptotic independence at these distances. Our two

estimators (2.16) and (2.17) of (α, β) yield estimates (α̂, β̂) of (1.55, 2.24) and (1.56,

2.24), respectively. They are extremely similar, as hinted by the simulation study from

Section 2.5.2. The curve θ(·; α̂, β̂) corresponding to the least squares estimator is also

shown in the left panel of Figure 2.9. The middle panel of Figure 2.9 displays similar

curves for the least squares estimator when m varies from 200 to 1 000. It shows that

the estimated curve is robust with respect to the choice of m.
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Figure 2.9: Left: Estimated parameters θ̂
(s)
n against the distances ∆(s). The black line represents the

estimated curve θ(·; 1.55, 2.24). Middle: Estimated curve θ(·; α̂, β̂) for the least squares estimator
with different values of m. Right: The 40 sampled locations in the state of Victoria, southeastern
Australia.

2.7 Proofs of main results

In this section are collected the proofs of Theorems 2.1 to 2.5. A number of more

technical results, which are instrumental in the following, are collected in Section 2.8.

2.7.1 Bivariate estimation

For the proofs concerning the bivariate estimators, we assume the framework of

Sections 2.3.1 and 2.3.2, we define the transformed random variables U = 1− F1(X),

V = 1 − F2(Y ) and note that Q is the distribution function of the random vector

(U, V ). Define the transformed observations Ui = 1 − F1(Xi), Vi = 1 − F2(Yi) and
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denote by Un,1, . . . , Un,n and Vn,1, . . . , Vn,n the ordered versions thereof. Additionally

define Un,0 = Vn,0 = 0. For an intermediate sequence k, define the random functions

un and vn by

un(x) =
n

k
Un,⌊kx⌋ and vn(y) =

n

k
Vn,⌊ky⌋,

for (x, y) ∈ [0, T ]2. Recalling that m = nq(k/n), it allows us to write

ĉn(x, y) =
n

m
Qn

(
k

n
un(x),

k

n
vn(y)

)
where

Qn(x, y) :=
1

n

n∑
i=1

1 {Ui ≤ x, Vi ≤ y}

denotes the empirical distribution function of (U1, V1), . . . , (Un, Vn). We begin by

discussing technical results that will be used in the proof of both Theorem 2.1 and

Theorem 2.2. Consider the decomposition

Wn(x, y) =
√
m
( n
m
Qn

(k
n
un(x),

k

n
vn(y)

)
− n

m
Q
(k
n
un(x),

k

n
vn(y)

))
+
√
m
( n
m
Q
(k
n
un(x),

k

n
vn(y)

)
− c(un(x), vn(y))

)
+
√
m
(
c(un(x), vn(y))− c(x, y)

)
.

For the second term in the above decomposition, note that

√
m
( n
m
Q
(k
n
x,
k

n
y
)
− c(x, y)

)
= O

(√
mq1

(
k

n

))
= o(1)

uniformly over all (x, y) ∈ [0, 2T ]2; here the last equation follows from Condition 2.1(ii).

By Corollary 2.1 we have P(un(T ) ∨ vn(T ) ≤ 2T ) → 1, and thus

sup
x,y∈[0,T ]

√
m
∣∣∣ n
m
Q
(k
n
un(x),

k

n
vn(y)

)
− c(un(x), vn(y))

∣∣∣ = oP (1) .

Next define for all x, y ∈ [0, 2T ]

Hn(x, y) :=
√
m
( n
m
Qn

(k
n
x,
k

n
y
)
− n

m
Q
(k
n
x,
k

n
y
))
. (2.24)

By Lemma 2.4 this process converges, in ℓ∞([0, 2T ]2), to the process W from The-

orem 2.1 and by Corollary 2.1 un and vn converge uniformly in probability to the

identity function I : [0, 2T ] → [0, 2T ]. Therefore, the triple (Hn, un, vn) converges
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jointly in distribution to (W, I, I). This implies

sup
x,y∈[0,T ]

∣∣∣Hn(un(x), vn(y))−Hn(x, y)
∣∣∣ = oP (1) . (2.25)

Indeed, consider the map

f :

{
ℓ∞([0, 2T ]2)× V [0, T ]× V [0, T ] → R

(a, b1, b2) 7→ supx,y∈[0,T ] |a(b1(x), b2(y))− a(x, y)|

where V[0, T ] := {g ∈ ℓ∞([0, T ]) : g([0, T ]) ⊂ [0, 2T ]} and assume that the product

space is equipped with the norm ∥a∥∞ + ∥b1∥∞ + ∥b2∥∞. Observe that f is continuous

at points (a, b1, b2) where a is a continuous function and that the sample paths of

W are almost surely continuous. Thus, by the continuous mapping theorem, with

probability converging to 1,

sup
x,y∈[0,T ]

∣∣∣Hn(un(x), vn(y))−Hn(x, y)
∣∣∣ = f(Hn, un, vn)⇝ f(W, I, I) = 0.

Since the limit is constant a.s. (2.25) follows. Combining the equations above, we find

Wn(x, y) = Hn(x, y) +
√
m
(
c(un(x), vn(y))− c(x, y)

)
+ oP (1) , (2.26)

where the term oP (1) is uniform on [0, T ]2, and we recall thatHn ⇝ W in ℓ∞([0, 2T ]2).

Proof of Theorem 2.1

Define

Sn(x, y) :=
√
m
(
c(un(x), vn(y)) + c(x, y)

)
.

In light of (2.26) it suffices to prove that Sn
P→ 0 uniformly on [0, T ]2. From here on

it is more convenient to study component-wise increments. That is, we write

Sn(x, y) =
√
m(c(un(x), y)− c(x, y)) +

√
m(c(un(x), vn(y))− c(un(x), y))

=: S(a)
n (x, y) + S(b)

n (x, y)

and we will show that both S
(a)
n and S

(b)
n converge to 0 in probability, starting with

S
(a)
n .

By assumption, since with probability converging to 1 we have un(x) ∈ [0, 2T ] for

every x ≤ T , we can write

S(a)
n (x, y) =

√
m (c(un(x), y) + c(x, y)) (2.27)
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=
√
m

{
n

m
Q

(
k

n
un(x),

k

n
y

)
− n

m
Q

(
k

n
x,
k

n
y

)
+OP

(
q1

(
k

n

))}
=

n√
m

(
Q

(
k

n
un(x),

k

n
y

)
−Q

(
k

n
x,
k

n
y

))
+ oP (1) (2.28)

uniformly on [0, T ]2, since the sequence m was chosen so that
√
mq1(k/n) → 0. We

will use both (2.27) and (2.28) as representations of S
(a)
n throughout the proof.

Let βn = (m/k)/(log(k/m)). From there, partition [0, T ]2 in Θ
(1)
n = [0, 1/k)× [0, T ],

Θ
(2)
n = [1/k, βn)× [0, T ] and Θ

(3)
n = [βn, T ]× [0, T ] (if βn < 1/k, Θ

(2)
n is empty). These

sets represent the “small”, “intermediate” and “large” values of x, respectively. We will

prove that the suprema of S
(a)
n on Θ

(1)
n , Θ

(2)
n and Θ

(3)
n all converge to 0 in probability.

(2.28) yields

sup
(x,y)∈Θ(1)

n

|S(a)
n (x, y)| = n√

m
sup

0≤x<1/k

∣∣∣∣Q(knun(x), kny
)
−Q

(
k

n
x,
k

n
y

)∣∣∣∣+ oP (1)

=
n√
m

sup
0≤x<1/k

Q

(
k

n
x,
k

n
y

)
+ oP (1)

≤ n√
m

1

n
+ oP (1)

=
1√
m

+ oP (1) ,

where we have once again used the facts that un(x) = 0 whenever x < 1/k and that

Q(0, ·) = Q(·, 0) = 0, in addition to the fact that Q(u, v) ≤ u. This proves that

sup
Θ

(1)
n

|S(a)
n | → 0 in probability.

Using (2.28) again, the supremum of S
(a)
n on Θ

(2)
n can be expressed as

sup
1/k≤x<βn

∣∣S(a)
n (x, y)

∣∣ = sup
1/k≤x<βn

n√
m

∣∣∣∣Q(knun(x), kny
)
−Q

(
k

n
x,
k

n
y

)∣∣∣∣+ oP (1)

≤ sup
1/k≤x<βn

n√
m

∣∣∣∣knun(x)− k

n
x

∣∣∣∣+ oP (1)

= sup
1/k≤x<βn

k√
m
|un(x)− x|+ oP (1)

= OP

(
sup

1/k≤x<βn

√
k

m
φ(x)

)
+ oP (1) ,

where we have used Lipschitz continuity of Q and Lemma 2.3. The last bound holds

for any function φ that satisfies the conditions in Lemma 2.3, but from now on we

use φ(x) :=
√
x log log(1/x) on (0, B] and φ(x) :=

√
x on (B, T ], where B > 0 is

chosen small enough so that φ is well defined and non-decreasing. By monotonicity,
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the supremum is attained at x = βn. We then have

sup
1/k≤x<βn

∣∣S(a)
n (x, y)

∣∣ = OP

(√
k

m
βn log log(1/βn)

)
+ oP (1)

because since βn → 0, eventually βn ≤ B, so eventually φ(βn) =
√
βn log log(1/βn).

The last display converges in probability to 0 since

k

m
βn log log(1/βn) =

log log
(
k
m
log(k/m)

)
log(k/m)

−→ 0

as k/m→ ∞, which proves that sup
Θ

(2)
n

|S(a)
n | → 0 in probability.

Finally, when considering large values of x, Lemma 2.3 and a combination of

Lemmas 2.7 and 2.8 imply that

sup
βn≤x≤T

∣∣S(a)
n (x, y)

∣∣ = sup
βn≤x≤T

√
m|c(un(x), y)− c(x, y)|

≲
√
m sup

βn≤x≤T
|un(x)− x|r(x ∨ un(x))

= OP

(√
m

k
sup

βn≤x≤T
φ(x)r(x ∨ un(x))

)
,

where r(x) = (x log(1/x))−1. By monotonicity of φ, the inside of the OP term can be

upper bounded by √
m

k
sup

βn≤x≤T
φ(x ∨ un(x))r(x ∨ un(x))

and since with probability converging to 1, for every x ≤ T , un(x) ≤ 2T , this can in

turn be upper bounded (with probability converging to 1) by√
m

k
sup

βn≤x≤2T
φ(x)r(x).

It can easily be checked (e.g. by differentiation) that the function φ×r is decreasing.
Thus, the above supremum is attained at βn. Finally, elementary computations yield√

m

k
φ(βn)r(βn) ≲

√
log log((k/m)2)

log(k/m)
−→ 0.

Overall, we have shown that S
(a)
n

P→ 0 uniformly over [0, T ]2. Note that all the

bounds we derived are uniform over all values of y ∈ [0, T ], although it was removed

from the notation for parsimony. In order to deal with S
(b)
n , we recall once again that

with probability converging to 1, we have un(x) ≤ 2T for every x ≤ T . Therefore,
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with probability converging to 1,

sup
(x,y)∈[0,T ]2

∣∣S(b)
n (x, y)

∣∣ = sup
(x,y)∈[0,T ]2

√
m|c(un(x), vn(y))− c(un(x), y)|

≤ sup
x∈[0,2T ],y∈[0,T ]

√
m|c(x, vn(y))− c(x, y)|.

This can be shown to converge in probability to 0 using the exact same proof as for

S
(a)
n . We finally conclude that Sn

P→ 0 in ℓ∞([0, T ]2), and the proof for deterministic

k = kn is complete. It remains to show that the result continues to hold if we replace

the deterministic sequence k = kn by data-dependent k̂ as outlined in Section 2.3.1.

This is established in Section 2.7.1. □

Proof of Theorem 2.2

In view of (2.26), we require the joint asymptotic behavior of Hn, un and vn. Define,

for (x, y) ∈ [0,∞)2,

L(1)
n (x) =

1

k

n∑
i=1

1

{
Ui ≤

k

n
x

}
and L(2)

n (y) =
1

k

n∑
i=1

1

{
Vi ≤

k

n
y

}
,

a rescaled version of the marginal empirical distribution functions of U and V . We

now show that the D-valued process

(x, y) 7→
(
Hn(x, y),

√
m
(
L(1)
n (x)− x

)
,
√
m
(
L(2)
n (y)− y

))
(2.29)

converges in distribution to the Gaussian process (W,W (1),W (2)) defined in Sec-

tion 2.4.1 with covariance matrix Λ from (2.19), where D :=
(
ℓ∞([0, 2T ]2)

)3
.

Again, let I denote the identity map on R. The three processes Hn,
√
m(L

(1)
n − I)

and
√
m(L

(2)
n − I) are individually tight (see Lemma 2.4) and hence it suffices to prove

convergence of the marginal distributions. This in turn follows from convergence of

the covariance function, by the multivariate Lindeberg-Feller theorem (see van der

Vaart (2000), Theorem 2.27); verification of the Lindeberg condition is similar to

condition (B) in the proof of Lemma 2.4. The convergence of E [Hn(x, y)Hn(x
′, y′)] to

c(x∧ x′, y ∧ y′) is already shown in Lemma 2.4. Using similar arguments and recalling

that m/k → χ > 0, one easily deals with the other covariance terms and concludes

that the processes in (2.29) weakly converge to (W,W (1),W (2)) in D.
Note that the random functions un and vn are the generalized inverses of L

(1)
n +1/k

and L
(2)
n + 1/k, respectively. Because

√
m/k → 0, the term 1/k is negligible. Upon

applying Vervaat’s lemma (Vervaat (1972)), which states that the generalized inverse

mapping is Hadamard differentiable around the identity function, we deduce that the
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processes Gn, defined by

Gn(x, y) = (Hn(x, y),
√
m(un(x)− x),

√
m(vn(y)− y)),

weakly converge to (W,−W (1),−W (2)) in D. For t > 0, define the sets

V(t) := {b ∈ ℓ∞([0, 2T ]) : ∀x ∈ [0, T ], x+ tb(x) ∈ [0, 2T ]}. (2.30)

Let Dn ⊂ D be the subset of functions a = (a(0), a(1), a(2)) such that a(1)(x, y) is constant

in y, a(2)(x, y) is constant in x and the functions x 7→ a(1)(x, y) and y 7→ a(2)(x, y) are

elements of V(1/
√
m). Let E be the space of equivalence classes L∞([0, T ]2) equipped

with the topology of hypi-convergence. Define the functionals fn : Dn → E by

fn(a)(x, y) := a(0)(x, y) +
√
m

(
c

(
x+

a(1)(x, y)√
m

, y +
a(2)(x, y)√

m

)
− c(x, y)

)
.

(2.26) can be rephrased as Wn = fn(Gn) + oP (1), assuming that Gn ∈ Dn, which is

true with probability

P (un(T ) ≤ 2T, vn(T ) ≤ 2T ) −→ 1.

Let D0 ⊂ D be the subset of continuous functions a such that a(0) = 0. As soon as

an ∈ Dn converges uniformly to a ∈ D0, by Lemma 2.9, fn(an) hypi-converges to f(a),

where f : D0 → E satisfies

f(a) := a(0) + ċ1a
(1) + ċ2a

(2).

Note that (W,−W (1),−W (2)) concentrates on D0. Therefore, by the extended

continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1),

Wn = fn(Gn) + oP (1)⇝ f((W,−W (1),−W (2))) = W − ċ1W
(1) − ċ2W

(2)

in E. It remains to show that the result continues to hold if we replace the deterministic

sequence k = kn by data-dependent k̂ as outlined in Section 2.3.1. This is established

in Section 2.7.1. □

Proof that Theorems 2.1 and 2.2 continue to hold with k̂

Let ĉn,k̂ be the estimator ĉn computed with the random quantity k̂ instead of k.

We shall prove that
√
m|ĉn,k̂ − ĉn| → 0 in probability uniformly over [0, T ]2 (under

asymptotic independence) or in the hypi semimetric (under asymptotic dependence).

Note that the definition of k̂ implies that ĉn(k̂/k, k̂/k) = 1. By assumption, ĉn
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converges to c in probability uniformly in a neighborhood of (1, 1). Jointly with the

fact that c(x, x) = x1/η, this readily implies that k̂/k → 1 in probability. Further note

that

ĉn,k̂(x, y) =
q(k/n)

q(k̂/n)
ĉn(k̂x/k, k̂y/k).

We first discuss the case of asymptotic independence. By Theorem 2.1 and by

Skorokhod’s almost sure representation, we may assume that almost surely, ĉn =

c + W/
√
m + o(1/

√
m) and k̂/k → 1. The object of interest is then equal, with

probability one, to

q(k/n)

q(k̂/n)

√
m

(
ĉn(k̂x/k, k̂y/k)−

q(k̂/n)

q(k/n)
ĉn(x, y)

)

=
q(k/n)

q(k̂/n)

{√
m
(
c(k̂x/k, k̂y/k)− q(k̂/n)

q(k/n)
c(x, y)

)
+W (k̂x/k, k̂y/k)−W (x, y)

}
+ o(1)

= −
√
mc(x, y)

(
q(k̂/n)

q(k/n)
−
(
k̂/n

k/n

)1/η
)
q(k/n)

q(k̂/n)
+ o(1), (2.31)

where we have used homogeneity of c, regular variation of q and the fact that almost

surely, the sample paths of W are continuous, hence uniformly continuous on compact

sets. The terms o(1) are uniform over [0, T ]2. Finally, it is shown in Lemma 2.2

that uniformly over a in a neighborhood of 1, q(at)/q(t)− a1/η = O(q1(t)). Recalling

that k̂/k → 1 almost surely, the first term in (2.31) is then uniformly of the order of
√
mq1(k/n), which vanishes by Condition 2.1(ii).

In the case of asymptotic dependence, Theorem 2.2 ensures that ĉn = c+B/
√
m+

o(1/
√
m) in the hypi semimetric. We may apply the reasoning above except that,

from the definition of the process B, we get the additional term

−
2∑
j=1

(
ċj(k̂x/k, k̂y/k)W

(j)(k̂x/k, k̂y/k)− ċj(x, y)W
(j)(x, y)

)
= −

2∑
j=1

ċj(x, y)
(
W (j)(k̂x/k, k̂y/k)−W (j)(x, y)

)
; (2.32)

this follows from the fact that under asymptotic dependence, c is homogeneous of

order 1 and the directional partial derivatives of such a function, when they exist,

are constant along rays from the origin. The above term vanishes uniformly since ċj

has to be locally bounded (only under asymptotic dependence) and since the sample

paths of W (j) are almost surely continuous. We therefore obtain (2.31), except that

this time the term o(1) is understood in the hypi semimetric. From here on the proof
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is completed in the same way as under asymptotic independence. □

Proof of Theorem 2.3

Recall the definition of Ψn from Section 2.3.2. Letting σ̂n = n
m
ζ̂n, the assumption that

(θ̂n, ζ̂n) minimizes the norm of Ψ∗
n becomes equivalent to (θ̂n, σ̂n) minimizing the norm

of Ψn. The key is to note that for any θ, σ,

Ψ(θ, σ)−Ψn(θ, σ) =

∫
g(ĉn − c)dµL =

1√
m

∫
gWndµL, (2.33)

with Wn defined as in Theorems 2.1 and 2.2. By the dominated convergence theorem,

and because g is integrable, one easily sees that the functional f 7→
∫
gfdµL is

continuous in ℓ∞([0, T ]2). By Lemma 2.10, this is also true in the topology of hypi-

convergence on ℓ∞([0, T ]2) at points f that are continuous Lebesgue-almost everywhere

on [0, T ]2. It is the case of both limiting Gaussian processes appearing in Theorems 2.1

and 2.2: W , W (1) and W (2) have almost surely continuous sample paths and under

asymptotic dependence, the directional derivatives ċj are almost everywhere continuous.

Those two results and the continuous mapping theorem then imply that∫
gWndµL ⇝ N(0, A).

We may therefore apply Lemma 2.11 with ϕ = Ψ, x0 = (θ0, 1), Yn = 1√
m

∫
gWndµL

and an = 1/
√
m, and as required we obtain

√
m((θ̂n, σ̂n)− (θ0, 1)) = (J⊤J)−1J⊤

∫
gWndµL + oP (1)⇝ N(0,Σ).

□

2.7.2 Spatial estimation

For the proofs in the spatial setting, we assume the framework of Section 2.3.3, we

define the transformed random variables U (j) = 1−F (j)(X(j)) and for a pair s, let Q(s)

be the distribution function of the random vector (U (s1), U (s2)). Define the transformed

observations U
(j)
i = 1− F (j)(X

(j)
i ) and denote by U

(j)
n,1, . . . , U

(j)
n,n the ordered versions

thereof and define U
(j)
n,0 := 0. For intermediate sequences k(s), we define the (weighted)

empirical tail quantile functions u
(s,j)
n , s ∈ P , j ∈ {1, 2}, by

u(s,j)n (x) =
n

k(s)
U

(sj)

n,⌊k(s)x⌋, x ≥ 0.
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Recalling that m(s) = nq(s)(k(s)/n), it allows us to write

ĉ(s)n (x, y) =
n

m(s)
Q(s)
n

(
k(s)

n
u(s,1)n (x),

k(s)

n
u(s,2)n (y)

)
.

where Q
(s)
n denotes the empirical distribution function of (U

(s1)
1 , U

(s2)
1 ), . . . , (U

(s1)
n , U

(s2)
n ).

Following the discussion before the proof of Theorem 2.1, we may define

H(s)
n (x, y) :=

√
m(s)

{ 1

m(s)

n∑
i=1

I
{
U

(s1)
i ≤ k(s)

n
x, U

(s2)
i ≤ k(s)

n
y
}

− n

m(s)
P
(
U (s1) ≤ k(s)

n
x, U (s2) ≤ k(s)

n
y
)}
.

and similarly obtain

W (s)
n (x, y) = H(s)

n (x, y)+
√
m(s)

(
c(s)
(
u(s,1)n (x), u(s,2)n (y)

)
− c(s)(x, y)

)
+ oP (1) , (2.34)

where W
(s)
n is defined as in Theorem 2.4 and the term oP (1) is uniform over compact

sets.

Proof of Theorem 2.4

For asymptotically independent pairs, the second term of (2.34) vanishes uniformly,

by the proof of Theorem 2.1. Define the D-valued processes Gn by

Gn(x, y) :=

((
H(s)
n (x, y)

)
s∈P ,

(√
m(s)

(
u(s,1)n (x)− x

)
,
√
m(s)

(
u(s,2)n (y)− y

))
s∈PD

)
,

where D = (ℓ∞([0, 2T ]2))
|P|+2|PD|

. The proof now proceeds similarly to that of The-

orem 2.2; we show that Gn converges in distribution, that the processes of interest

W
(s)
n can be approximately represented as a transformation of Gn, and we conclude

by applying a continuous mapping theorem.

For s ∈ P , j ∈ {1, 2}, let

L(s,j)
n (x) =

1

k(s)

n∑
i=1

1

{
U (sj) ≤ k(s)

n
x

}
, x ≥ 0.

Recall that I denotes the identity mapping on R. By standard arguments (see,

e.g., the proofs of Theorems 2.1 and 2.2), we see that each of the processes H
(s)
n

and
√
m(s)

(
L
(s,j)
n − I

)
converge in distribution in ℓ∞([0, 2T ]2), hence they are tight
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random elements in that space. It follows that the sequence of processes

(x, y) 7→
((
H(s)
n (x, y)

)
s∈P ,

(√
m(s)

(
L(s,1)
n (x)− x

)
,
√
m(s)

(
L(s,2)
n (y)− y

))
s∈PD

)
(2.35)

is tight in the product space D. A Lindeberg-type condition (van der Vaart, 2000,

Theorem 2.27) can easily be checked, so weak convergence of the process in (2.35)

follows from convergence of E
[
Gn(x, y)Gn(x

′, y′)⊤
]
to a suitable covariance matrix.

This is simply a consequence of Condition 2.2; indeed, for suitable pairs s, s′ ∈ P,

j, j′ ∈ {1, 2} and (x, y), (x′, y′) ∈ [0,∞)2, this condition implies that

lim
n→∞

E
[
H(s)
n (x, y)H(s′)

n (x′, y′)
]
= Γ(s,s′)((x, y), (x′, y′)),

lim
n→∞

E
[
H(s)
n (x, y)

√
m(s′)

(
L(s′,j)
n (x′)− x′

)]
= Γ(s,s′,j)((x, y), (x′, y′)),

lim
n→∞

E
[√

m(s)
(
L(s,j)
n (x)− x

)√
m(s′)

(
L(s′,j′)
n (x′)− x′

)]
= Γ(s,j,s′,j′)((x, y), (x′, y′)).

We deduce that in D, the processes in (2.35) weakly converge to the Gaussian process(
(W (s))s∈P , (W

(s,j))s∈PD,j∈{1,2}
)

as defined in Section 2.4.2. Noting that u
(s,j)
n is the generalized inverse function of

L
(s,j)
n + 1/k(s) and that

√
m(s)/k(s) → 0, we apply Vervaat’s lemma (Vervaat, 1972) to

obtain that

Gn ⇝ G :=
(
(W (s))s∈P , (−W (s,j))s∈PD,j∈{1,2}

)
(2.36)

in D.
Recall the definition of the sets V(t) in (2.30) and let Dn ⊂ D be the subset of

functions a of the form
(
(a(s))s∈P , (a

(s,j))s∈PD,j∈{1,2}
)
such that a(s,1)(x, y) is constant

in y, a(s,2)(x, y) is constant in x and such that the functions x 7→ a(s,1)(x, y) and

y 7→ a(s,2)(x, y) are elements of V
(
1/
√
m(s)

)
.

Defining E as the product space (L∞([0, T ]2))
|P|
, with L∞([0, T ]2) equipped with

the topology of hypi-convergence, consider the following functionals fn : Dn → E. For
an element a =

(
(a(s))s∈P , (a

(s,j))s∈PD,j∈{1,2}
)
∈ Dn, fn(a) = (fn(a)

(s))s∈P is a function

such that fn(a)
(s) = a(s) if s ∈ PI , and

fn(a)
(s)(x, y) = a(s)(x, y)+

√
m(s)

(
c(s)
(
x+

a(s,1)(x, y)√
m(s)

, y +
a(s,2)(x, y)√

m(s)

)
− c(s)(x, y)

)
if s ∈ PD. Referring to (2.34) and recalling that the second term thereof vanishes if

s ∈ PI , we notice that for every pair s, W
(s)
n = fn(Gn)

(s) + oP (1). This representation,



CHAPTER 2. ESTIMATION UNDER ASYMPTOTIC DEPENDENCE AND INDEPENDENCE 56

of course, holds only if Gn ∈ Dn; this is satisfied with probability at least

P
(
∀s ∈ PD, j ∈ {1, 2}, u(s,j)n (T ) ≤ 2T

)
−→ 1

where the last convergence follows by Corollary 2.1 applied for each s ∈ P. Define

f : D0 → E, where D0 ⊂ D is the subset of continuous functions a such that a(0) = 0,

as

f(a)(s) =

a(s), s ∈ PI
a(s) + ċ1a

(s,1) + ċ2a
(s,2), s ∈ PD

.

For a sequence an ∈ Dn that converges uniformly to a function a ∈ D0, fn(an) → f(a)

in E. This can be seen by considering each pair separately; the result is obvious for

asymptotically independent pairs, and for asymptotically dependent ones it follows

from Lemma 2.9.

Finally, notice that the process G concentrates on D0. Therefore, by (2.36) and the

extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem

1.11.1), (
W (s)
n

)
s∈P

= fn(Gn) + oP (1)⇝ f(G) =
(
B(s)

)
s∈P

in E. □

Proof of Theorem 2.5

Similarly to the bivariate case, let

Ψ(s)
n (θ, σ) := (n/m)Ψ∗(s)

n (θ,mσ/n).

As in the proof of Theorem 2.3, we may deduce that for every pair s, θ ∈ Θ̃ and σ > 0,

Ψ(s)(θ, σ)−Ψ(s)
n (θ, σ) =

∫
g
(
ĉ(s)n − c(s)

)
dµL =

1√
m

∫
gW (s)

n dµL,

with W
(s)
n as defined in Theorem 2.4. By a similar argument to the bivariate case

(involving the dominated convergence theorem and Lemma 2.10 to establish continuity

of the mapping f 7→
∫
gfdµL, see the proof of Theorem 2.3 for the applicability of

Lemma 2.10), Theorem 2.4 and the continuous mapping theorem yield(∫
gW (s)

n dµL

)
s∈P
⇝

(∫
gB(s)dµL

)
s∈P

. (2.37)

The remaining proof consists of a number of successive applications of Lemma 2.11.

We deal with each of the two estimators separately.
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(i) For each pair s, applying Lemma 2.11 with ϕ = Ψ(s), x0 = (h(s)(ϑ0), 1), an =

1/
√
m and Yn = 1√

m

∫
gW

(s)
n dµL yields

θ̂(s)n − h(s)(ϑ0) =
1√
m
D(s)

∫
gW (s)

n dµL + oP

(
1√
m

)
, (2.38)

where D(s) is the block corresponding to the pair s in the matrix D defined in

(2.21); its existence, as well as the required smoothness of ϕ, are guaranteed

by Condition 2.3. Now redefining ϕ as ϕ(ϑ) =
(
h(s)(ϑ) − h(s)(ϑ0)

)
s∈P , we see

that ϑ̂n is in fact a minimizer of the norm of ϕ(ϑ) − Yn, where Yn is redefined

as
(
θ̂
(s)
n − h(s)(ϑ0)

)
s∈P . Applying Lemma 2.11 again with ϕ and Yn as above,

x0 = ϑ0 and an = 1/
√
m, we obtain

ϑ̂n − ϑ0 = (J⊤
1 J1)

−1J⊤
1 Yn + oP

(
1√
m

)
=

1√
m
(J⊤

1 J1)
−1J⊤

1

(
D(s)

∫
gW (s)

n dµL

)
s∈P

+ oP

(
1√
m

)
,

where the last equality follows from (2.38) and J1 is defined as in Section 2.4.2

in the paragraph below (2.21). The conclusion that
√
m(ϑ̂n − ϑ0) ⇝ N(0,Σ1)

follows from this and (2.37).

(ii) Let σ̃n = n
m
ζ̃n ∈ R|P|

+ . Once more, we redefine

Yn =
1√
m

(∫
gW (s)

n dµL

)
s∈P

and ϕ(ϑ, σ) =
(
Ψ(s)(h(s)(ϑ), σ(s))

)
s∈P .

The estimator (ϑ̃n, σ̃n) can be seen to minimize the norm of ϕ− Yn. Therefore,

applying Lemma 2.11 with an = 1/
√
m and x0 = (ϑ0, 1, . . . , 1), we obtain

(ϑ̃n, σ̃n)− (ϑ0, 1, · · · , 1) =
1√
m
(J⊤

2 J2)
−1J⊤

2

(∫
gW (s)

n dµL

)
s∈P

+ oP

(
1√
m

)
,

which, combined with (2.37), implies
√
m((ϑ̃n, σ̃n)− (ϑ0, 1, · · · , 1))⇝ N(0,Σ2).

□

2.8 Auxiliary results

Throughout this chapter, particularly the proof of Lemma 2.2 below, we use (without

reference when obvious) the following results on regularly varying functions at 0.
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Lemma 2.1. Suppose the functions f1 and f2 are regularly varying at 0 with indices

ρ1 and ρ2, respectively.

(i) If ρ1 > 0 (respectively ρ1 < 0), limt→0 f1(t) = 0 (respectively ∞).

(ii) For any α ∈ R, fα1 is (αρ1)–RV at 0.

(iii) The product f1f2 is (ρ1 + ρ2)–RV at 0.

(iv) If limt→0 f2(t) = 0, then f1 ◦ f2 is (ρ1ρ2)–RV at 0.

(v) If ρ1 > 0, then f−1
1 is (1/ρ1)–RV at 0, where we define the generalized inverse of

f1 as

f−1
1 (t) = inf{u > 0 : f1(u) ≥ t}.

Proof. The assertions (ii) and (iii) are trivial consequences of the definition of regular

variation. As for (i), (iv) and (v), analogue versions for regularly varying functions at

∞ are proved in Proposition 0.8 of Resnick (1987). The proof can readily be adapted,

using the fact that f is ρ–RV at 0 if and only if u 7→ 1/f(1/u) is ρ–RV at ∞.

Lemma 2.2. (i) Assume (2.9). Then there exists η ∈ (0, 1] such that q is a regularly

varying (RV) function at 0 with index 1/η and c is 1/η-homogeneous.

(ii) Assume Condition 2.1(i) and suppose that q1 is non-decreasing and that there

exists b > 1 such that q1(bt) = O(q1(t)) as t → 0. Then (2.9) holds locally

uniformly on [0,∞)2.

Remark. In part (ii) of the previous result, the monotonicity condition on q1 is

artificial; it can be removed at the cost of replacing q1(t) by the non-decreasing

function q̄1(t) := sup0<s≤t q1(s). Indeed, if Condition 2.1 is satisfied with q1, it is

trivially satisfied with q̄1. Moreover, if q1(bt) = O(q1(t)), q̄1 also satisfies the same

property.

Because q1 is positive non-decreasing, that required property implies that q1(bt) =

O(q1(t)) holds for every b ≥ 1 (Bingham et al., 1987, Corollary 2.0.6). The function

q1 is then said to be O-regularly varying at 0.

Proof. (i) Recall that we assume c(1, 1) = 1. For any x > 0, (2.9) implies that

Q(tx, tx) = q(t)(c(x, x) + o(1)) and Q(tx, tx) = q(tx)(1 + o(1)). This can be

manipulated into
q(tx)

q(t)
=
c(x, x) + o(1)

1 + o(1)
−→ c(x, x).

By Karamata’s characterization theorem (Bingham et al., 1987, Theorem 1.4.1),

q has to be ρ–RV and c(x, x) = xρ, for some ρ ∈ R. However, since q(t) ≤ t, we
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must have ρ ≥ 1. Moreover, for any a, x, y > 0,

c(ax, ay) = lim
t→0

Q(atx, aty)

q(t)
= lim

t→0

Q(tx, ty)

q(t/a)
= lim

t→0

Q(tx, ty)

q(t)

q(t)

q(t/a)
= aρc(x, y).

Defining η = 1/ρ, this proves (i).

(ii) For arbitrary (x, y) ∈ [0,∞)2, we write (x, y) = a(u, v). We will prove that

(2.9) holds uniformly over all (u, v) ∈ S+ and over a ∈ (0, b], for an arbitrary

b ∈ [1,∞).

We have
Q(tx, ty)

q(t)
=
Q(atu, atv)

q(t)
=
q(at)

q(t)

Q(atu, atv)

q(at)
. (2.39)

First, the term Q(atu, atv)/q(at) is equal to c(u, v) + O(q1(at)) uniformly in

(u, v) ∈ S+. In order to control the term q(at)/q(t), we note that since q is

1/η-RV, there exists a slowly varying function ℓ such that for any a > 0,

ℓ(at)

ℓ(t)
− 1 = a−1/η

(
q(at)

q(t)
− c(a, a)

)
= a−1/η

(
Q(at, at)(1 +O(q1(at)))

q(t)
− c(a, a)

)
= a−1/η

(
Q(at, at)

q(t)
− c(a, a) +O(q1(at))

)
= O(q1(t) + q1(at)) = O(q1(bt)) = O(q1(t)),

where we have used the fact that Q(at, at) = q(at)(1 +O(q1(at))), which can be

reversed into q(at) = Q(at, at)(1 +O(q1(at))). The function ℓ is thus said to be

slowly varying with remainder (Bingham et al., 1987, Section 3.12). By theorem

3.12.1 of that book, the previous relation holds uniformly over all a ∈ (1/2, b], so

we henceforth focus on values a ∈ (0, 1/2]. Using Theorem 3.12.2 of the same

book (which we adapt for slow variation at 0), we obtain that for some constants

C ∈ R, T0 ∈ (0,∞) and for t small enough,

ℓ(t) = exp

{
C + δ1(t) +

∫ T0

t

δ2(s)

s
ds

}
,

where the functions δj are real-valued, measurable and satisfy |δj(t)| ≤ Kq1(t)

for some constant K ∈ (0,∞). The ratio ℓ(at)/ℓ(t) becomes

ℓ(at)

ℓ(t)
= exp

{
δ1(at)− δ1(t) +

∫ t

at

δ2(s)

s
ds

}
.
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As t→ 0, we can use the monotonicity of q1 to control the integral in the previous

display:∣∣∣∣∫ t

at

δ2(s)

s
ds

∣∣∣∣ ≤ K

∫ t

at

q1(s)

s
ds ≤ Kq1(t)

∫ t

at

ds

s
= Kq1(t) log

(
1

a

)
.

Because a ≤ 1/2, log(1/a) is lower bounded, K can be chosen large enough so that

Kq1(t) log(1/a) also upper bounds the absolute value of δ1(at)− δ1(t)+
∫ t
at

δ2(s)
s
ds.

Therefore, using the fact that for every h ∈ R, |eh − 1| ≤ e|h| − 1, we obtain∣∣∣∣ℓ(at)ℓ(t)
− 1

∣∣∣∣ ≤ exp

{
Kq1(t) log

(
1

a

)}
− 1 = a−Kq1(t) − 1.

What we are interested in is bounding q(at)/q(t) − a1/η. This can be done by

recalling that∣∣∣∣q(at)q(t)
− a1/η

∣∣∣∣ = a1/η
∣∣∣∣ℓ(at)ℓ(t)

− 1

∣∣∣∣ ≤ a1/η
(
a−Kq1(t) − 1

)
=: τ(a, t). (2.40)

By simple differentiation, it is straightforward to see that for a fixed value of t

small enough so that Kq1(t) < 1/η, the function τ is differentiable in its first

argument and that

∂

∂a
τ(a, t) = a1/η−1

(
(1/η −Kq1(t))a

−Kq1(t) − 1/η
)
.

This suggests that the function attains its unique maximum at the point amax(t) :=

(1− ηKq1(t))
1/(Kq1(t)). Considering (2.40), we obtain that for all a ∈ (0, 1/2],∣∣∣∣q(at)q(t)

− a1/η
∣∣∣∣ ≤ τ(amax(t), t)

= (1− ηKq1(t))
1/(ηKq1(t))

(
1

1− ηKq1(t)
− 1

)
= O(q1(t))

as t→ 0, since (1−ηKq1(t))1/(ηKq1(t)) → e−1 and since the function x 7→ 1/(1−x)
is continuously differentiable at 0. Finally, this allows us to rewrite (2.39) as

Q(tx, ty)

q(t)
=
(
a1/η +O(q1(t))

)
(c(u, v) +O(q1(at))) = a1/ηc(u, v) +O(q1(t)),

and the last equation holds uniformly over a ∈ (0, b] and (u, v) ∈ S+. The proof

is over since a1/ηc(u, v) = c(x, y).
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Lemma 2.3. Let φ : (0, T ] → (0,∞) be a non-decreasing function such that

φ(t)/
√
t→ ∞ as t→ 0 and assume there exists c > 0 such that∫ T

0

1

x
exp

{
−cφ

2(x)

x

}
dx <∞.

Then under the assumptions of Theorem 2.1, for every λ ∈ (0, 1) we have

sup
λ/k≤x≤T

√
k

φ(x)
|un(x)− x| = OP (1) ,

where un is defined as in Section 2.7.1. In particular, note that φ(x) := 1, as well as

any function that satisfies φ(x) :=
√
x log log(1/x) in a neighborhood of 0, are valid

choices.

Proof. This is essentially proved in Csörgő and Horváth (1987), up to a slight difference

between their definition of the quantiles and ours. We prove here that this difference

does not change the result. More precisely, their Theorem 2.6 (ii) states that

sup
λ/k≤x≤T

|wn(x)|
φ(x)

= OP (1) , (2.41)

where we denote wn what they call vn (to avoid confusion with our definitions). From

their definitions, one easily sees that

wn(x) =
n√
k

(
k

n
x− Un,⌈kx⌉

)
=

√
k
(
x− n

k
Un,⌈kx⌉

)
.

Then, by the reverse triangle inequality,

|
√
k|un(x)− x| − |wn(x)|| ≤ |

√
k(un(x)− x) + wn(x)|

=
√
k
∣∣∣un(x)− n

k
Un,⌈kx⌉

∣∣∣ = n√
k

(
Un,⌈kx⌉ − Un,⌊kx⌋

)
.

Using this and the inequality ⌊x⌋ ≥ ⌈x⌉ − 1, we have∣∣∣∣∣ sup
λ/k≤x≤T

√
k

φ(x)
|un(x)− x| − sup

λ/k≤x≤T

|wn(x)|
φ(x)

∣∣∣∣∣
≤ n√

k
sup

λ/k≤x≤T

1

φ(x)

(
Un,⌈kx⌉ − Un,⌊kx⌋

)
≤ n√

k
sup

λ/k≤x≤T

1

φ(x)

(
Un,⌈kx⌉ − Un,⌈kx⌉−1

)
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≤ n√
k

sup
λ/k≤x≤(1+λ)/k

1

φ(x)

(
Un,⌈kx⌉ − Un,⌈kx⌉−1

)
+

n√
k

sup
(1+λ)/k≤x≤T

1

φ(x)

(
Un,⌈kx⌉ − Un,⌈kx⌉−1

)
. (2.42)

In the first term, since λ/k ≤ x ≤ (1 + λ)/k and λ ∈ (0, 1), we must have

⌈kx⌉ ∈ {1, 2}. Therefore, we end up studying Un,i − Un,i−1, for some i ∈ {1, 2}. It

is a well known fact that those differences, regardless of the value of i, have a Beta

distribution with parameters 1 and n. In particular, they are both OP (1/n). It follows

that the first supremum on the right hand side of (2.42) is asymptotically bounded in

probability by
1√
k

sup
λ/k≤x≤(1+λ)/k

1

φ(x)
=

1√
kφ(λ/k)

−→ 0

by assumption on φ. As for the second term in (2.42), it is equal to

n√
k

sup
(1+λ)/k≤x≤T

1

φ(x)

(
Un,⌈kx⌉ − Un,⌈k(x−1/k)⌉

)
=

n√
k

sup
λ/k≤x≤T−1/k

1

φ(x+ 1/k)

(
Un,⌈k(x+1/k)⌉ − Un,⌈kx⌉

)
after shifting x to the right by 1/k. Using (2.41), this is in turn equal to

n√
k

sup
λ/k≤x≤T−1/k

1

φ(x+ 1/k)

(
k

n

(
x+

1

k

)
− k

n
x

)
+

n√
k
OP

(√
k

n

)
=

1√
k

sup
λ/k≤x≤T−1/k

1

φ(x+ 1/k)
+OP (1)

=
1√

kφ((1 + λ)/k)
+OP (1)

= OP (1)

once again by the properties of φ. We have shown that the difference between the

quantity we are interested in and the term appearing in (2.41) is OP (1). We may thus

conclude, by (2.41), that

sup
λ/k≤x≤T

√
k

φ(x)
|un(x)− x| = sup

λ/k≤x≤T

|wn(x)|
φ(x)

+OP (1) = OP (1) .

Corollary 2.1. Define the random functions un and vn as in Section 2.7.1. Then, as
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n→ ∞,

sup
0≤x≤2T

|un(x)− x| and sup
0≤y≤2T

|vn(y)− y|

are both OP

(
1/
√
k
)
.

Proof. Note that by definition, un(z) = vn(z) = 0 whenever z < 1/k. It follows that

sup
0≤x≤2T

|un(x)− x| ≤ sup
0≤x<1/k

|un(x)− x|+ sup
1/k≤x≤2T

|un(x)− x|

= sup
0≤x<1/k

x+ sup
1/k≤x≤2T

|un(x)− x|

=
1

k
+ sup

1/k≤x≤2T

|un(x)− x|.

This is OP

(
1/
√
k
)
by the preceding Lemma 2.3 with the function φ(x) = 1. The

same proof holds with un replaced by vn.

Lemma 2.4. Under Condition 2.1 the process Hn as defined in (2.24) converges to

the process W from Theorem 2.1 in ℓ∞([0, 2T ]2).

Proof. Denoting fn,(x,y)(u, v) :=
√

n
m
1
{
u ≤ k

n
x, v ≤ k

n
y
}
, we see that Hn can be

written as

Hn(x, y) =
√
n

(
1

n

n∑
i=1

fn,(x,y)(Ui, Vi)− E
[
fn,(x,y)(U, V )

])
.

Therefore, convergence of the process Hn to a Gaussian process in ℓ∞([0, 2T ]2) is

equivalent to checking that the sequence of function classes

Fn = {fn,(x,y) : (x, y) ∈ [0, 2T ]2}

are Donsker classes for the distribution of (U, V ). This is guaranteed by Theorem

11.20 of Kosorok (2008), provided that we can check the six conditions. Note that Fn

admits the envelope function Fn = fn,(2T,2T ).

(0) First, the AMS condition is trivially satisfied; by right continuity of indicator

functions, for any n ∈ N, (x, y) ∈ [0, 2T ]2 and (u, v) ∈ [0, 1]2,

inf
(x′,y′)∈Q2

|fn,(x′,y′)(u, v)− fn,(x,y)(u, v)| = 0.

It follows that Equation (11.7) of Kosorok (2008) is satisfied with Tn = Q2, which

is countable. Hence the classes Fn are AMS.
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(A) For every n, it is easily checked that Fn is a VC class with VC-index 2. Therefore,

condition (A) is a direct consequence of Lemma 11.21 of Kosorok (2008).

(B) For (x, y), (x′, y′) ∈ [0, 2T ]2 arbitrary, it follows from the definition of Hn that

E [Hn(x, y)Hn(x
′, y′)] = E

[
fn,(x,y)(U, V )fn,(x′,y′)(U, V )

]
− E

[
fn,(x,y)(U, V )

]
E
[
fn,(x′,y′)(U, V )

]
=

n

m
P
(
U ≤ k

n
(x ∧ x′), V ≤ k

n
(y ∧ y′)

)
− n

m
P
(
U ≤ k

n
x, V ≤ k

n
y

)
P
(
U ≤ k

n
x′, V ≤ k

n
y′
)
.

Recall that n/m = 1/q(k/n). Therefore, the first term of the last display

converges to c(x ∧ x′, y ∧ y′). The second term vanishes since both probabilities

are of the order of m/n. The convariance functions of Hn thus converge pointwise

to the covariance function of W .

(C) By definition of the envelope functions and by assumption, we have

lim sup
n→∞

E
[
F 2
n(U, V )

]
= lim sup

n→∞

n

m
P
(
U ≤ k

n
2T, V ≤ k

n
2T

)
= c(2T, 2T ) <∞.

(D) For every ε > 0,

E
[
F 2
n(U, V )1

{
Fn(U, V ) > ε

√
n
}]

≤ n

m
1

{√
n

m
> ε

√
n

}
,

which is equal to 0 as soon as m ≥ ε−2.

(E) We first recall that for arbitrary events A,B,

P (1A ̸= 1B) = P (A\B) + P (B\A) = P (A) + P (B)− 2P (A ∩B) .

A direct application of this fact yields

ρ2n((x, y), (x
′, y′)) : = E

[
(fn,(x,y)(U, V )− fn,(x′,y′)(U, V ))2

]
=

n

m
P
(
1

{
U ≤ k

n
x, V ≤ k

n
y

}
̸= 1

{
U ≤ k

n
x′, V ≤ k

n
y′
})

=
n

m
P
(
U ≤ k

n
x, V ≤ k

n
y

)
+
n

m
P
(
U ≤ k

n
x′, V ≤ k

n
y′
)

− 2
n

m
P
(
U ≤ k

n
(x ∧ x′), V ≤ k

n
(y ∧ y′)

)
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−→ c(x, y) + c(x′, y′)− 2c(x ∧ x′, y ∧ y′)

=: ρ2((x, y), (x′, y′)).

Moreover, by Lemma 2.2(ii), this convergence is uniform over [0, 2T ]4. This means

that for any sequences xn, yn, x
′
n, y

′
n in [0, 2T ] such that ρ((xn, yn), (x

′
n, y

′
n)) → 0,

ρn((xn, yn), (x
′
n, y

′
n)) is equal to

{ρn((xn, yn), (x′n, y′n))− ρ((xn, yn), (x
′
n, y

′
n))}+ ρ((xn, yn), (x

′
n, y

′
n))

≤ sup
(x,y,x′,y′)∈[0,2T ]4

|ρn((x, y), (x′, y′))− ρ((x, y), (x′, y′))|

+ ρ((xn, yn), (x
′
n, y

′
n))

−→ 0.

Finally, the theorem implies that Hn ⇝ W in ℓ∞([0, 2T ]2).

Lemma 2.5. Let Q be a bivariate copula. If there exists a positive function q and

a finite function c that is not everywhere 0 such that for every (x, y) ∈ [0,∞)2, as

n→ ∞,
Q(x/n, y/n)

q(1/n)
−→ c(x, y),

then there exists a measure ν such that for every (x, y) ∈ [0,∞)2, c(x, y) = ν((0, x]×
(0, y]). Note that (2.9) satisfies this setting.

Proof. Define the measures νn by

νn((0, x]× (0, y]) =
Q(x/n, y/n)

q(1/n)

and fix a ∈ (0,∞). Note that since c is not everywhere 0, c(a, a) is eventually positive,

so for n and a large enough, νn((0, a]
2) > 0. Then clearly

Pn,a :=
(
νn((0, a]

2)
)−1

νn

is a probability measure on [0, a]2. Since it is supported on the same compact set

for every n, the sequence {Pn,a : n ∈ N} is tight. Thus, by Helly’s selection theorem

there exists a probability measure Pa also supported on [0, a]2 and a subsequence

{nj : j ∈ N} such that Pnj ,a ⇝ Pa. However, by definition of νn, we have for every

(x, y) ∈ [0, a]2

Pnj ,a((0, x]× (0, y]) −→ c(x, y)

c(a, a)
.

Therefore, we must have Pa((0, x] × (0, y]) = c(x, y)/c(a, a), so choosing νa =
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c(a, a)Pa, the result holds for every (x, y) ∈ [0, a]2. However, the value of νa((0, x]×
(0, y]) is independent of a (as long as x ∨ y ≤ a), so νa can be uniquely extended to a

measure ν on the bounded Borel sets of [0,∞)2.

Lemma 2.6 (similar to Theorem 1 in Ramos and Ledford (2009)). Define the function

c as in (2.9). Then there exists a finite measure H on [0, 1] such that, for every

(x, y) ∈ [0,∞)2,

c(x, y) =

∫
[0,1]

(
x

1− w
∧ y

w

)1/η

H(dw).

It is also useful to note that this integral is equal to∫
[0, y

x+y ]

(
x

1− w

)1/η

H(dw) +

∫
( y
x+y

,1]

( y
w

)1/η
H(dw).

Proof. By Lemma 2.5, we can write

c(x, y) = ν((0, x]× (0, y]) =

∫
[0,∞)2

1(0,x]×(0,y]dν =

∫
[0,∞)2\{0}

1[0,x]×[0,y]dν. (2.43)

In the last equality, nothing changed since ν((0, x]× {0} ∪ {0} × (0, y]) ≤ c(x, 0) +

c(0, y) = 0. Then, through the mapping f : [0,∞)2\{0} → (0,∞)× [0, 1] defined by

f(x, y) = (x+ y, y
x+y

), define the push-forward measure µ = ν ◦ f−1. By homogeneity

of ν, we see that µ is a product measure:

µ((0, r]× (0, w]) = r1/ηµ((0, 1]× (0, w]) =: G((0, r])H((0, w]),

where G is a measure on (0,∞) and H is a measure on [0, 1]. Finally, for any (x, y),

define the function g : (0,∞)× [0, 1] → R as

g(r, w) = 1

{
r ≤ x

1− w
∧ y

w

}
,

so that g ◦ f = 1[0,x]×[0,y]. Using (2.43) and Theorem 9.15 from Teschl (1998), we have

c(x, y) =

∫
[0,∞)2\{0}

g ◦ fdν

=

∫
(0,∞)×[0,1]

gdµ

=

∫
[0,1]

∫
(0,∞)

1(0, x
1−w

∧ y
w ]
(r)G(dr)H(dw)

=

∫
[0,1]

(
x

1− w
∧ y

w

)1/η

H(dw),
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where we used Fubini’s theorem to write the integral with respect to the product

measure µ as a double integral. Moreover, note that H is finite since

H([0, 1]) = µ((0, 1]× [0, 1]) = ν
({

(x, y) ∈ [0,∞)2 : x+ y ≤ 1
})

≤ c(1, 1) = 1.

Lemma 2.7. Define the function c as in (2.9). Then for every (x, y) ∈ [0, T ]2 and

h > 0,

c(x+ h, y)− c(x, y) ≤ 1

η
h
c(x+ h, y)

x+ h
.

Proof. By Lemma 2.6, write

c(x, y) =

∫
[0,1]

(
x

1− w
∧ y

w

)1/η

H(dw) =:

∫
[0,1]

f(x, y, w)H(dw).

Clearly, it is sufficient to prove that for every x, y, h, w,

f(x+ h, y, w)− f(x, y, w) ≤ 1

η
h
f(x+ h, y, w)

x+ h
, (2.44)

because then the result follows by integrating both sides. To prove (2.44), first note

that for any y, w,

f(x, y, w) =


(

x
1−w

)1/η
, x ≤ 1−w

w
y(

y
w

)1/η
, x ≥ 1−w

w
y
.

As a function of x, this is continuously differentiable everywhere on (0, T ] except

at the change point x = 1−w
w
y and its derivative with respect to x, f ′, is equal to

f(x, y, h)/(ηx) on the first part and 0 on the second. From here we consider three

different cases, depending on the position of the change point with respect to x and

x+ h.

First, if x+ h ≤ 1−w
w
y,

f(x+ h, y, w)− f(x, y, w) = hf ′(ξ, y, w) = h
f(ξ, y, w)

ηξ
,

for some ξ ∈ [x, x+ h], by Taylor’s theorem. By monotonicity, this is upper bounded

by
1

η
h
f(x+ h, y, w)

x+ h
.

Next, if 1−w
w
y ≤ x, f(x+ h, y, w)− f(x, y, w) = 0 so the result is trivial.
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Finally, if x < 1−w
w
y < x+ h,

f(x+h, y, w)−f(x, y, w) = f

(
1− w

w
y, y, w

)
−f(x, y, w) =

(
1− w

w
y − x

)
f(ξ, y, w)

ηξ
,

for ξ between x and 1−w
w
y, once again by Taylor’s theorem. By monotonicity, we have

f(ξ, y, w)

ηξ
≤ 1

η 1−w
w
y

( y
w

)1/η
=

1

η 1−w
w
y
f(x+ h, y, w).

Moreover,
1−w
w
y − x

1−w
w
y

≤ (x+ h)− x

(x+ h)
=

h

x+ h
,

because the function t 7→ (t− x)/t is non-decreasing. Piecing everything together, we

have

f(x+ h, y, w)− f(x, y, w) ≤ 1

η
h
f(x+ h, y, w)

x+ h
.

We have proved that (2.44) holds for every (x, y) ∈ [0, T ]2, h > 0 and w ∈ [0, 1].

Lemma 2.8. Define the function c as in (2.9) and assume Condition 2.1(i). Then

there exists a constant K := KT <∞ such that for every (x, y) ∈ [0, T ]2,

c(x, y) ≤ K

log(1/x)
.

Proof. We will prove that as x→ 0,

c(x, y) ≲
1

log(1/x)

uniformly for all y ∈ [0, T ]. Since c is locally bounded, the result will follow.

Since Condition 2.1(i) is satisfied, we may assume it is satisfied with the function

q1(t) = 1/ log(1/t). Recall that as t ↓ 0, by Lemma 2.2,

Q(tx, ty) = q(t)c(x, y) +O(q(t)q1(t))

uniformly over all (x, y) ∈ [0, T ]2. That is,

c(x, y) =
Q(tx, ty)

q(t)
+O(q1(t)) ≤

tx

q(t)
+O(q1(t)) (2.45)

uniformly, by Lipschitz continuity of the copula Q. The previous relation holds

whenever t→ 0, and in particular it holds when t and x are related and both tend to

0.
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Define g(t) = q(t)q1(t)/t→ 0 as t→ 0. We argue, in the following, that for any x

small enough, there exists t(x) > 0 such that x ≤ g(t(x)) ≤ 21/ηx. Plugging t(x) into

(2.45), we find that as x→ 0,

c(x, y) ≤ t(x)x

q(t(x))
+O(q1(t(x))) = O(q1(t(x))), (2.46)

because, since we assume x ≤ g(t(x)),

t(x)x

q(t(x))
≤ t(x)

q(t(x))
g(t(x)) = q1(t(x)).

Moreover, since the function g is ρ-RV at 0, ρ := 1/η − 1, for small enough t we

have g(t) ≥ tα, as long as α > ρ. This means that

q1(t(x)) =
1

log(1/t(x))
=

α

log(1/t(x)α)
≲

1

log(1/g(t(x)))
.

Finally, by the assumption that g(t(x)) ≤ 21/ηx, we get

q1(t(x)) ≲
1

log(1/g(t(x)))
≲

1

log(1/x)

which, in conjunction with (2.46), yields the desired bound for c(x, y) as x → 0,

uniformly over bounded y.

The only thing left is to prove the existence of a point t(x) such that g(t(x)) ∈
[x, 21/ηx] for every small enough x. This can be done by using the fact that the function

g is ρ-RV at 0. Applying Theorem 1.5.6(iii) in Bingham et al. (1987) (adapted to

functions of regular variation at 0) with any δ ∈ (0, 1) and A = 21−δ, we find that

there exists T0 ∈ (0,∞) such that for every t ≤ T0,

g(t)

g(t/2)
≤ 21−δ2ρ+δ = 21/η.

We now construct a non-increasing sequence the follwing way: take t0 = T0 and

for n ∈ N, define tn = tn−1/2 if g(tn−1/2) ≤ g(tn−1). Otherwise, tn = tn−1/4 if

g(tn−1/4) ≤ g(tn−1). Otherwise, we try tn−1/8, etc. In general

tn = max

{
tn−1

2k
: k ∈ N, g

(
tn−1

2k

)
≤ g(tn−1)

}
.

Therefore, the sequence satisfies, for every natural n,

1 ≤ g(tn)

g(tn+1)
≤ 21/η. (2.47)
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Now choose any x ∈ (0, T0/2] and let t = minn∈N{tn : g(tn) ≥ x}. Clearly,

g(t) ≥ x, and g(t) has to be ≤ 21/ηx. Indeed, suppose the opposite. Then by (2.47),

g(tn+1) ≥ g(t)/21/η > x, which contradicts the definition of t. We conclude that for

every x ∈ (0, T0/2], the desired t(x) exists.

Lemma 2.9. Assume the setting of Theorem 2.2. For arbitrary positive t and T , let

V(t) := {b ∈ ℓ∞([0, 2T ]) : ∀x ∈ [0, T ], x+ tb(x) ∈ [0, 2T ]}.

Let tn ↓ 0 and assume that bn := (b
(1)
n , b

(2)
n ) ∈ V(tn)2 converges uniformly to a

continuous function b = (b(1), b(2)) such that b(1)(0) = b(2)(0) = 0. Then, the functions

gn : [0, T ] → R defined by

gn(x, y) :=
c
(
x+ tnb

(1)
n (x), y + tnb

(2)
n (y)

)
− c(x, y)

tn

hypi-converge to ċ1(x, y)b
(1)(x) + ċ2(x, y)b

(2)(y), where ċ1 and ċ2 are defined as in

Section 2.4.1.

Proof. Let L be the stable tail dependence function associated to the random vector

(X, Y ). Because we assume asymptotic dependence, we know that χ := limt↓0 q(t)/t >

0 and that c(x, y) = (x+ y − L(x, y))/χ. Then,

gn(x, y) = χ−1

b(1)n (x) + b(2)n (y)−
L
(
x+ tnb

(1)
n (x), y + tnb

(2)
n (y)

)
− L(x, y)

tn

 .

By assumption, the sum of the first two terms converges uniformly to b(1)(x)+b(2)(y).

Let S ⊂ [0,∞)2 be the set of points where L is differentiable. Since L is convex,

the complement of S is Lebesgue-null and the gradient of L is continuous on S
(Rockafellar, 1970, Theorem 25.5). By Lemma F.3 of Bücher et al. (2014), the last

term hypi-converges to

L1(x, y) :=

sup
ε>0

inf
{
L̇1(x

′, y′)b(1)(x′) + L̇2(x
′, y′)b(2)(y′) : (x′, y′) ∈ S, ∥(x, y)− (x′, y′)∥ < ε

}
,

where L̇j are defined like ċj: L̇1(x, y) is the first partial derivative at (x, y) from the

left, except if x = 0 in which case it is from the right, and L̇2 is always the second

partial derivative from the right. We argue below that the hypi-distance between

the functions L1 and L2, defined by L2(x, y) = L̇1(x, y)b
(1)(x) + L̇2(x, y)b

(2)(y), is 0.

That is, L1 and L2 belong to the same equivalence class in the space L∞([0, 2T ]2) and
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hypi-convergence to L1 is equivalent to hypi-convergence to L2. It follows that gn(x, y)

hypi-converges to

b(1)(x) + b(2)(y)− L2(x, y)

χ
= ċ1(x, y)b

(1)(x) + ċ2(x, y)b
(2)(y), (2.48)

where the last equality is a consequence of the relation L̇j(x, y) = 1 − χċj(x, y),

j ∈ {1, 2}.
To prove the equivalence between L1 and L2, first note that by continuity of b(1)

and b(2),

L1(x, y) :=

sup
ε>0

inf
{
L̇1(x

′, y′)b(1)(x) + L̇2(x
′, y′)b(2)(y) : (x′, y′) ∈ S, ∥(x, y)− (x′, y′)∥ < ε

}
.

Let L̇−
j and L̇+

j denote the directional partial derivatives of L from the left and

right, respectively. The function L2 can then be expressed the following way, and we

analogously define L3:

L2(x, y) = L̇−
1 (x, y)b

(1)(x) + L̇+
2 (x, y)b

(2)(y),

L3(x, y) := L̇+
1 (x, y)b

(1)(x) + L̇−
2 (x, y)b

(2)(y).

The main tool is the homogeneity property of L (L(ax, ay) = aL(x, y), a ≥ 0).

It implies that the directional derivatives L̇±
j are constant along rays of the form

{az : a > 0}, z ∈ (0,∞)2 and therefore that S consists exactly of a dense union of

such rays.

Fix a point (x, y) ∈ (0,∞)2. For any sufficiently small ε > 0, the open ε-ball B(ε)

around (x, y) can be partitioned into the two open “half-balls”

B1(ε) := {(x′, y′) ∈ B(ε) : y′/x′ > y/x}, B2(ε) := {(x′, y′) ∈ B(ε) : y′/x′ < y/x}

and the line B3(ε) := {(x′, y′) ∈ B(ε) : y′/x′ = y/x}. Provided that ε is sufficiently

small, there exists a positive δ = δ(ε) such that δ(ε) → 0 as ε→ 0, such that each point

in B1(ε) is on the same ray as some u ∈ (x− δ, x]× {y} and some v ∈ {x} × [y, y + δ)

and such that each point in B2(ε) is on the same ray as some u ∈ (x, x + δ) × {y}
and some v ∈ {x} × (y − δ, y). By Rockafellar (1970), Theorem 24.1, we have

lim
δ↓0

L̇±
1 (x− δ, y) = L̇−

1 (x, y), lim
δ↓0

L̇±
1 (x+ δ, y) = L̇+

1 (x, y),

lim
δ↓0

L̇±
2 (x, y − δ) = L̇−

2 (x, y), lim
δ↓0

L̇±
2 (x, y + δ) = L̇+

2 (x, y).
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Then, as ε→ 0, the vectors (L̇±
1 (x

′, y′), L̇±
2 (x

′, y′)) converge to (L̇−
1 (x, y), L̇

+
2 (x, y)) for

(x′, y′) ∈ B1(ε) and to (L̇+
1 (x, y), L̇

−
2 (x, y)) for (x

′, y′) ∈ B2(ε). It follows by continuity

of b that for any sufficiently small ε > 0,

lim
(x′,y′)→(x,y),(x′,y′)∈B1(ε)

L2(x
′, y′) = lim

(x′,y′)→(x,y),(x′,y′)∈B1(ε)
L3(x

′, y′) = L2(x, y) (2.49)

lim
(x′,y′)→(x,y),(x′,y′)∈B2(ε)

L2(x
′, y′) = lim

(x′,y′)→(x,y),(x′,y′)∈B2(ε)
L3(x

′, y′) = L3(x, y) (2.50)

In particular, since L̇±
j are constant on B3(ε), the semicontinuous hulls of L2 are

L2,∧(x, y) := sup
ε>0

inf {L2(x
′, y′) : (x′, y′) ∈ B(ε)} = L2(x, y) ∧ L3(x, y),

L2,∨(x, y) := inf
ε>0

sup {L2(x
′, y′) : (x′, y′) ∈ B(ε)} = L2(x, y) ∨ L3(x, y),

and since B1(ε) ∩ S and B2(ε) ∩ S are always nonempty, the preceding relations also

hold if B(ε) is intersected with S, whence

L1(x, y) = sup
ε>0

inf {L2(x
′, y′) : (x′, y′) ∈ B(ε) ∩ S} = L2,∧(x, y).

One easily argues that L1 is lower semicontinuous, i.e. its lower semicontinuous hull is

equal to L1 itself, which is also equal to the lower semicontinuous hull of L2.

Next observe that

L1,∨(x, y) = inf
ε>0

sup {L2(x
′, y′) ∧ L3(x

′, y′) : (x′, y′) ∈ B(ε)}

= L2(x, y) ∨ L3(x, y) = L2,∨(x, y).

where the first equality follows from the definition of L1,∨, the fact that L1 = L2,∧ as

shown earlier and the representation for L2,∧ derived above while the second equality

follows from (2.49) and (2.50).

The previous argument assumes (x, y) ∈ (0,∞)2. It remains to show that the

semicontinuous hulls of L1 also correspond to those of L2 on the axes. For this, assume

now that x > 0, y = 0. The ball B(ε) around (x, 0) now becomes a “half-ball” (we

intersect if with [0,∞)2). Let (x′, y′) be a point in that ball. Then (x′, y′) is on the

same ray as (x, δ), for some δ ≥ 0 that can be made to converge to 0 as ε→ 0. We

have L̇±
2 (x

′, y′) = L̇±
2 (x, δ) → L̇+

2 (x, 0) as ε → 0. For the first derivative, the known

bounds x ∨ y ≤ L(x, y) ≤ x+ y imply that x ≤ L(x, δ) ≤ x+ δ. The convexity and

homogeneity properties then imply that

L̇1(x, 0) = 1 ≥ L̇±
1 (x, δ) ≥

L(x, δ)− L(0, δ)

x
≥ x− δ

x
−→ 1
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as ε → 0. By uniform boundedness of L̇±
1 , L̇

±
2 it follows easily that L1 and L2 are

continuous at (x, 0) and that L1(x, 0) = L2(x, 0) = b(1)(x), whence those two functions

have the same semicontinuous hulls at that point.

Because L̇1(0, y) was defined as the partial derivative from the right, one deals with

a point (0, y) in the same way.

Finally, note that since b(1)(0) = b(2)(0) = 0, and by uniform boundedness of L̇±
1 , L̇

±
2

the functions L1 and L2 are both continuous and take the value 0 at (0, 0). Their

semicontinuous hulls are therefore also equal at that point.

We have shown that everywhere on [0,∞)2, L1,∧ = L2,∧ and L1,∨ = L2,∨. By

definition (see Bücher et al., 2014, Proposition 2.1), this means that dhypi(L1,L2) =

0.

Lemma 2.10. Let f : [0, T ]2 → R be continuous Lebesgue-almost everywhere, g :=

(g1, . . . , gq)
⊤ : [0, T ]2 → Rq be a vector of integrable functions and assume that fn are

measurable and hypi-converge to f on [0, T ]2. Then
∫
gfndµL →

∫
gfdµL, where µL

denotes the Lebesgue measure on [0, T ]2.

Proof. For every j ∈ {1, . . . , q} and M <∞, we have∫
|gjfn − gjf |dµL

=

∫
|gj||fn − f |1 {|gj| ≤M} dµL +

∫
|gj||fn − f |1 {|gj| > M} dµL

≤M

∫
|fn − f |dµL + sup

(x,y)∈[0,T ]2
|fn(x, y)− f(x, y)|

∫
|gj|1 {|gj| > M} dµL

≤M

∫
|fn − f |dµL

+

(
sup

(x,y)∈[0,T ]2
|fn(x, y)|+ sup

(x,y)∈[0,T ]2
|f(x, y)|

)∫
|gj|1 {|gj| > M} dµL.

The first term on the right hand side converges to 0 by Proposition 2.4 of Bücher

et al. (2014) and since f is assumed continuous almost everywhere. By Proposition

2.3 of that paper, sup(x,y)∈[0,T ]2 |fn(x, y)| → sup(x,y)∈[0,T ]2 |f(x, y)|. Therefore, we have

lim
n→∞

∫
|gjfn − gjf |dµL ≤ 2 sup

(x,y)∈[0,T ]2
|f(x, y)|

∫
|gj|1 {|gj| > M} dµL,

which can be made arbitrarily small by choosing M large enough, since gj is integrable.

The claim follows.

Lemma 2.11. Let ϕ : Rp → Rq, p ≤ q, have a unique, well separated zero at a point

x0 ∈ Rp and be continuously differentiable at x0 with Jacobian matrix J := Jϕ(x0) of
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full rank p. Let Yn be a random vector in Rq such that a−1
n Yn weakly converges to a

random vector Y , for some sequence an → 0. Then if Xn = arg minx ∥ϕ(x)− Yn∥, we
have

Xn − x0 = (J⊤J)−1J⊤Yn + oP (an) .

Proof. Let hn := a−1
n (Xn−x0− (J⊤J)−1J⊤Yn). By definition of Xn, hn is a minimizer

of the random function Mn : Rp → R+ defined as

Mn(h) := a−1
n

∥∥∥ϕ(x0 + (J⊤J)−1J⊤Yn + anh
)
− Yn

∥∥∥.
By differentiability of ϕ, Mn(h) is the norm of(

J(J⊤J)−1J⊤ − I
)
a−1
n Yn + Jh+ o(1)

uniformly over bounded h, where I is the q × q identity matrix. The above display,

seen as a function of h, weakly converges to(
J(J⊤J)−1J⊤ − I

)
Y + Jh

in (ℓ∞(K))q, for any compact setK. The mapping f 7→ {h 7→ ∥f(h)∥} being continuous
from (ℓ∞(K))q onto ℓ∞(K), it follows that Mn ⇝M in ℓ∞(K), for

M(h) :=
∥∥∥(J(J⊤J)−1J⊤ − I

)
Y + Jh

∥∥∥.
The function M2 is strictly convex and has derivative ∂(M2(h))/∂h = 2J⊤Jh

which, since J has full rank, has a unique zero at h = 0. It follows that M2, and thus

M , has a unique minimizer at the point 0. Therefore, if we can show that the sequence

{hn} is uniformly tight, Corollary 5.58 of van der Vaart (2000) will ensure that hn

converges in distribution (and hence in probability) to 0, which in turn implies the

result.

It is known by Prohorov’s theorem that {a−1
n Yn} is uniformly tight. Therefore, it

is sufficient to establish tightness of {a−1
n (Xn − x0)}. First, define for δ > 0

ε(δ) = inf
x/∈B(x0,δ)

∥ϕ(x)∥,

where B(x0, δ) denotes an open δ-ball around x0. By assumption, ε(δ) > 0 for every

positive δ. Choose δ0 > 0 small enough so that for every x ∈ B(x0, δ0),

∥ϕ(x)− J(x− x0)∥ <
1

2
∥J(x− x0)∥,

which is possible by differentiability of ϕ (recall that J is the Jacobian at x0). By
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the reverse triangle inequality, this implies that |∥ϕ(x)∥ − ∥J(x− x0)∥| has the same

upper bound. Then, for δ ≤ δ0,

ε(δ) >
1

2
inf

x∈B(x0,δ)
∥J(x− x0)∥ =

σ1(J)

2
δ,

where σ1(J), the smallest singular value of J , is positive since J has full rank.

Now, fix an arbitrary η > 0. Because the sequence {a−1
n Yn} is uniformly tight,

there exists a finite K = K(η) such that for δn := Kan and for n large enough so that

δn ≤ δ0,

P
(
∥Yn∥ ≥ ε(δn)

2

)
≤ P

(
∥Yn∥ ≥ Kσ1(J)

4
an

)
≤ η

Hence with probability at least 1 − η, ∥Yn∥ < ε(δn)/2. The last inequality implies

two things. First, letting ϕn = ϕ − Yn and recalling that ϕ(x0) = 0, we have

∥ϕn(x0)∥ = ∥Yn∥ < ε(δn)/2. Second, for any x /∈ B(x0, δn), we have ∥ϕ(x)∥ ≥ ε(δn) so

∥ϕn(x)∥ = ∥ϕ(x)− Yn∥ ≥ |∥ϕ(x)∥ − ∥Yn∥| >
ε(δn)

2
.

That is, with probability at least 1 − η, Xn = arg minx ∥ϕn(x)∥ ∈ B(x0, δn). Since

δn = O(an) and η was arbitrary, we conclude that {a−1
n (Xn − x0)} is uniformly tight,

and so is {hn}.

2.9 Proof of the claims in Examples 2.8, 2.11 and 2.12

2.9.1 Example 2.8

Recall that the random vector Z := (1−X, 1−Y ) is assumed max-stable with uniform

margin and stable tail dependence function L, hence its distribution function is given

by (2.3). Let (x, y) ∈ (0, 1]2 (the result is trivial if x or y is zero). Note that we can

without loss of generality focus on (x, y) ∈ (0, 1]2 instead of general bounded sets since

any bounded set can be rescaled to be contained in [0, 1]2 at the cost of absorbing the

scaling into t. The survival copula Q of (X, Y ) satisfies

Q(tx, ty) := P (X ≥ 1− tx, Y ≥ 1− ty)

= P (1−X ≤ tx, 1− Y ≤ ty)

= exp{−L(− log(tx),− log(ty))}

= exp

{
log(t)L

(
1 +

log(x)

log(t)
, 1 +

log(y)

log(t)

)}
,
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where we have used the homogeneity property of L in the last line. By the assumed

expansion of the function L,

L

(
1 +

log(x)

log(t)
, 1 +

log(y)

log(t)

)
= L(1, 1) + L̇1(1, 1)

log(x)

log(t)
+ L̇2(1, 1)

log(y)

log(t)
+ δ(t, x, y),

where L̇1 and L̇2 are the right partial derivatives of L with respect to its first and

second argument, respectively, and

δ(t, x, y) ≲

(
log(x)

log(t)

)2

+

(
log(y)

log(t)

)2

.

This is a linear approximation of the function L; since that function is convex, it

lies above its sub gradient, so the error term δ(t, x, y) is non-negative. Plugging this

in our expression for Q(tx, ty) yields

Q(tx, ty) = tL(1,1)xL̇1(1,1)yL̇2(1,1)eδ
′(t,x,y),

where δ′(t, x, y) = log(t)δ(t, x, y) satisfies

log(x)2 + log(y)2

log(t)
≲ δ′(t, x, y) ≤ 0.

Letting q(t) = tL(1,1) and c(x, y) = xL̇1(1,1)yL̇2(1,1), we obtain∣∣∣∣Q(tx, ty)q(t)
− c(x, y)

∣∣∣∣ = xL̇1(1,1)yL̇2(1,1)
(
1− eδ

′(t,x,y)
)

≤ xL̇1(1,1)yL̇2(1,1)|δ′(t, x, y)|

≲
xL̇1(1,1)yL̇2(1,1)(log(x)2 + log(y)2)

log(1/t)
,

where we used the fact that 0 ≤ 1− ex ≤ |x| for all x ≤ 0. Since L̇1(1, 1) and L̇2(1, 1)

are positive it follows that this upper bound is of order 1/ log(1/t) uniformly over x, y

in bounded sets. The claim in Example 2.8 is proved. □

2.9.2 Example 2.11

Now, recall the setting of Example 2.11. The expression for Γ(s,s) is trivial. We shall

treat the case where s and s′ are two pairs that share an element, i.e. s = (s1, s2) and

s′ = (s1, s3). One similarly deals with different combinations of s, s′, including the

case where they are disjoint.

Let L be the stable tail dependence function of the max-stable, trivariate random
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vector (1−X(s1), 1−X(s2), 1−X(s3)). By assumption and by the calculations above

for the bivariate case, the pairs (X(s1), X(s2)) and (X(s1), X(s3)) satisfy Condition 2.1(i)

with scaling functions q(s)(t) = tL(1,1,0) and q(s
′)(t) = tL(1,0,1), respectively. Since those

functions are invertible, we may choose any diverging sequence m = o(log(n)2) and

invert them, setting k(s)/n = (m/n)1/L(1,1,0) and k(s
′)/n = (m/n)1/L(1,0,1). In fact, we

may do so with every pair and obtain, as claimed, a universal sequence m.

Without loss of generality, let us assume that L(1, 1, 0) ≤ L(1, 0, 1) so that k(s) ≤
k(s

′). Let tn = k(s)/n and α = L(1, 1, 0)/L(1, 0, 1) ∈ (0, 1]; observe that k(s
′)/n = tαn.

By definition, for fixed x1, x2 ∈ (0, 1]2 (we can restrict our attention to this setting by

similar arguments as in the bivariate case), we have

Γ(s,s′)(x1, x2) = lim
n→∞

n

m
P
(
1−X(s1) ≤ tnx, 1−X(s2) ≤ tny, 1−X(s3) ≤ tαnz

)
, (2.51)

where x is equal to x11 ∧ x12 if α = 1 and to x11 otherwise, y = x12 and z = x22. Using the

same reasoning as in the bivariate case above (including the homogeneity property of

L), the probability in (2.51) can be written as

exp {−L(− log(tnx),− log(tny),− log(tαnz))}

= exp

{
log(tn)L

(
1 +

log(x)

log(tn)
, 1 +

log(y)

log(tn)
, α+

log(z)

log(tn)

)}
= tL(1,1,α)n exp

{
log(tn)

[
L

(
1 +

log(x)

log(tn)
, 1 +

log(y)

log(tn)
, α+

log(z)

log(tn)

)
− L(1, 1, α)

]}
.

Eventually, log(tn) is negative, which makes the difference in the square brackets

non-negative by monotonicity of L. This eventually upper bounds the exponential by

1 and the entire expression by t
L(1,1,α)
n , for any x, y, z ∈ (0, 1]. Considering (2.51), it

follows that for every fixed x1, x2 ∈ (0, 1]2,

Γ(s,s′)(x1, x2) ≤ lim
n→∞

n

m
tL(1,1,α)n = lim

n→∞

(m
n

)L(1,1,α)
L(1,1,0)

−1

= 0,

since the assumption that L is component-wise strictly increasing means that L(1, 1, α) >

L(1, 1, 0). □

2.9.3 Example 2.12

We present here the main ideas, as most of the precise calculations are similar to the

preceding section. As before, let X(j) = Y (uj), and write Z(j) and Z ′(j) for Z(uj) and

Z ′(uj). Consider a pair s := (s1, s2) and let F be the distribution function of the unit
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Fréchet distribution. Recall that X(j) = max{aZ(j), (1− a)Z ′(j)}. We have for t ↓ 0

P
(
F (X(s1)) ≥ 1− tx, F (X(s2)) ≥ 1− ty

)
= P

(
F (Z(s1))1/a ∨ F (Z ′(s1))1/(1−a) ≥ 1− tx, F (Z(s2))1/a ∨ F (Z ′(s2))1/(1−a) ≥ 1− ty

)
= P

(
F (Z(s1)) ≥ (1− tx)a, F (Z(s2)) ≥ (1− ty)a

)
+ P

(
F (Z ′(s1)) ≥ (1− tx)1−a, F (Z ′(s2)) ≥ (1− ty)1−a

)
+O(t2), (2.52)

where the term O(t2) is uniform over bounded x, y. Note that (1− tx)a = 1− t(ax+

O(tx2)). The first term of (2.52) is equal to

aχZ,(s)t(x+ y − LZ,(s)(x, y)) +O(t2)

uniformly over bounded x, y, where χZ,(s) and LZ,(s) are the extremal dependence

coefficient and stable tail dependence function, respectively, corresponding to the

random vector (Z(s1), Z(s2)). From previous calculations, the second term of (2.52) is

equal to

((1− a)t)L
Z′,(s)(1,1)xL̇

Z′,(s)
1 (1,1)yL̇

Z′,(s)
2 (1,1) +O

(
tL

Z′,(s)(1,1)/ log(1/t)
)
,

uniformly over bounded x, y, where LZ
′,(s) is the stable tail dependence function

corresponding to the max-stable random vector (1/Z ′(s1), 1/Z ′(s2)). It follows that Con-

dition 2.1(i) is satisfied for every pair of locations; depending on whether (Z(s1), Z(s2))

is dependent or independent, either the first of the second of the last two expressions

dominates. This determines that q(s)(t) is proportional to t for asymptotically de-

pendent pairs and to t1/η
′(s)

for asymptotically independent ones, where η′(s) is the

coefficient of tail dependence of (1/Z ′(s1), 1/Z ′(s2)), satisfying 1 < 1/η′(s) < 2 by as-

sumption — for any inverted max-stable distribution, its coefficient of tail dependence

η is always in [1/2, 1), and can only be equal to 1/2 under perfect independence. The

coefficient of tail dependence η(s) of (X(s1), X(s2)) is equal to 1 if χZ,(s) > 0 and to η′(s)

otherwise.

We now show how to obtain an expression for the functions Γ(s,s′). First, since the

functions q(s) are proportional to simple powers, for a sufficiently slow intermediate

sequence m, we let k(s)/n be proportional to m/n if s is an asymptotically dependent

pair and to (m/n)η
(s)

otherwise, so that all m(s) are equal to m.

The case s = s′ follows trivially from the previous developments; Γ(s,s) can be

derived from c(s). Next consider the case where s, s′ share one element, i.e. s = (s1, s2)

and s′ = (s1, s3). Letting tn = k(s)/n and t′n = k(s
′)/n, assume without loss of
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generality that t′n ≲ tn. The probability of interest is of the form

P
(
F (X(s1)) ≥ 1− (tnx ∧ t′nx′), F (X(s2)) ≥ 1− tny, F (X

(s3)) ≥ 1− t′nz
)

= P
(
F (Z(s1)) ≥ (1− (tnx ∧ t′nx′))a, F (Z(s2)) ≥ (1− tny)

a, F (Z(s3)) ≥ (1− t′nz)
a
)

+ P
(
F (Z ′(s1)) ≥ (1− (tnx ∧ t′nx′))1−a, F (Z ′(s2)) ≥ (1− tny)

1−a,

F (Z ′(s3)) ≥ (1− t′nz)
1−a)+O(t2n).

Indeed, the third term above is the probability of a certain event that requires at least

one of the Z and one of the Z ′ to be large, which has probability at most O(t2n) since

Z and Z ′ are assumed independent (recall that we assumed t′n = O(tn)). We note that

the term in front of this probability in the definition of Γ(s,s′) is equal to q(s)(tn)
−1 =

t
−1/η(s)

n . However t2n = o(t
1/η(s)

n ) since η(s) > 1/2, and the second probability above

is also o(t
1/η(s)

n ), following the calculations for Example 2.11. Therefore, in this case,

Γ(s,s′)((x, y), (x′, z)) is equal to the limit

lim
n→∞

t−1/η(s)

n P
(
F (Z(s1)) ≥ (1− (tnx ∧ t′nx′))a,

F (Z(s2)) ≥ (1− tny)
a, F (Z(s3)) ≥ (1− t′nz)

a
)

= lim
n→∞

t−1/η(s)

n P
(
F (Z(s1)) ≥ 1− a(tnx ∧ t′nx′),

F (Z(s2)) ≥ 1− atny, F (Z
(s3)) ≥ 1− at′nz

)
which is non-zero if and only if (Z(s1), Z(s2), Z(s3)) is fully dependent (i.e., it contains

no pairwise independence).

For the case where the pairs s = (s1, s2) and s
′ = (s3, s4) are disjoint, let tn = k(s)/n

and t′n = k(s
′)/n and assume as before that t′n ≲ tn. By similar arguments as above,

one obtains that Γ(s,s′)((x, y), (x′, y′)) is equal to the limit

lim
n→∞

t−1/η(s)

n P
(
F (Z(s1)) ≥ 1− atnx, F (Z

(s2)) ≥ 1− atny,

F (Z(s3)) ≥ 1− at′nx
′, F (Z(s4)) ≥ 1− at′ny

′) ,
which is non-zero if and only if (Z(s1), Z(s2), Z(s3), Z(s4)) has no independent pairs.

Using the same ideas and after straightforward computations, one may calculate

the limits Γ(s,s′,j), for s′ ∈ PD. First, consider the case where s = (s1, s2) and s
′
j = s1,

that is the element s′j is in the pair s. Defining tn and t′n as above, we still have t′n ≲ tn

since s′ is an asymptotically dependent pair. Then Γ(s,s′,j)((x, y), (x′, y′)) is equal to

χZ,(s
′) lim
n→∞

t−1/η(s)

n P
(
F (Z(s1)) ≥ 1− a(tnx ∧ t′nx′), F (Z(s2)) ≥ 1− atny

)
,
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which is non-zero if and only if (Z(s1), Z(s2)) is dependent. Now if s3 := s′j is not an

element of s, Γ(s,s′,j)((x, y), (x′, y′)) becomes

χZ,(s
′) lim
n→∞

t−1/η(s)

n P
(
F (Z(s1)) ≥ 1− atnx, F (Z

(s2)) ≥ 1− atny, F (Z
(s3)) ≥ 1− at′nx

′) ,
which is non-zero if and only if (Z(s1), Z(s2), Z(s3)) is fully dependent.

Finally, for s, s′ ∈ PD, again letting tn = k(s)/n and t′n = k(s
′)/n, note that

this time t′n/tn is constant. Without loss of generality, let j = j′ = 1. Then

Γ(s,j,s′,j′)((x, y), (x′, y′)) is equal to

χZ,(s)χZ,(s
′) lim
n→∞

t−1
n P

(
F (Z(s1)) ≥ 1− tnx, F (Z

(s′1)) ≥ 1− t′ny
′
)
,

which is non-zero if and only if (Z(s1), Z(s′1)) is dependent. □

2.10 Proof of the claims in Example 2.9

The multiplicative constant appearing in the scaling function q, as a function of λ, is

given by

Kλ =



21−λ
2−λ , λ ∈ (0, 1)

2, λ = 1(
1− 1

λ

)λ−1 2(λ−1)
λ(2−λ) , λ ∈ (1, 2)

1
2
, λ = 2

(1− 1
λ)

2

1− 2
λ

, λ ∈ (2,∞)

; (2.53)

it can be deduced from the proof.

The argument must be separated in two cases depending on whether λ = 1.

2.10.1 The case λ ̸= 1

For now, assume that αR ̸= αW . Let F̄R denote the survival function of R. Then

F̄R(x) = x−αR for x > 1, and F̄R(x) = 1 for x ≤ 1. The first step in calculationg Q is

to find an expression for the survival function F̄ of X (and equivalently of Y ) and its

inverse. We have, for x ≥ 1,

F̄ (x) = P (RW1 > x)

= P
(
R >

x

W1

)
= E

[
F̄R

(
x

W1

)]
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= P (W1 > x) +

∫ x

1

(w
x

)αR αW
wαW+1

dw

= x−αW + αWx
−αR

xαR−αW − 1

αR − αW

=
αR

αR − αW
x−αW − αW

αR − αW
x−αR

=
α∨

α∨ − α∧
x−α∧

(
1− α∧

α∨ − α∧
xα∧−α∨

)
,

where α∧ and α∨ denote the smallest and the largest of the two α’s, respectively.

Although not easily invertible, this function is close to α∨
α∨−α∧

x−α∧ , which has an

analytical inverse. We now argue that this inverse is close to that of F̄ . First, for any

X ∈ (1,∞), we have for x ∈ [X,∞)

α∨

α∨ − α∧
x−α∧

(
1− α∧

α∨ − α∧
Xα∧−α∨

)
︸ ︷︷ ︸

f1(x)

≤ F̄ (x) ≤ α∨

α∨ − α∧
x−α∧︸ ︷︷ ︸

f2(x)

.

Now note that for two decreasing, invertible functions g1 and g2, g1 ≤ g2 is equivalent

to g−1
1 ≤ g−1

2 . This means that as soon as y ≤ f1(X), f−1
1 (y) ≤ F̄−1(y) ≤ f−1

2 (y). In

other words, for such y,(
1− α∧

α∨ − α∧
Xα∧−α∨

)1/α∧ ( α∨

α∨ − α∧

)1/α∧

y−1/α∧ ≤ F̄−1(y)

≤
(

α∨

α∨ − α∧

)1/α∧

y−1/α∧ .

Because these inequalities are true as soon as y ≤ f1(X), they are true if y = f1(X).

If y is small enough, choosing X =
(

1
2

α∨
α∨−α∧

)1/α∧
y−1/α∧ is sufficient to have y ≤ f1(X).

Therefore, if y is small enough, the first inequality in the last display becomes

F̄−1(y) ≥
(
1−O

(
y

α∨
α∧

−1
))( α∨

α∨ − α∧

)1/α∧

y−1/α∧ .

Combining this with the upper bound (the second inequality) yields

F̄−1(y) = (1 +O (yτ ))

(
α∨

α∨ − α∧

)1/α∧

y−1/α∧ , (2.54)

where τ = α∨
α∧

− 1.

The copula Q can now be expressed as

Q(tx, ty) = P
(
X ≥ F̄−1(tx), Y ≥ F̄−1(ty)

)
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= P
(
RW1 ≥ F̄−1(tx), RW2 ≥ F̄−1(ty)

)
= P (R ≥ Z) = E

[
F̄R(Z)

]
,

where

Z := Z(tx, ty) =
F̄−1(tx)

W1

∨ F̄−1(ty)

W2

.

Recalling the definition of F̄R, we have

Q(tx, ty) = P (Z ≤ 1) + E
[
Z−αR ;Z > 1

]
= P (Z ≤ 1) +

∫ ∞

0

P
(
Z−αR > a,Z > 1

)
da

= P (Z ≤ 1) +

∫ ∞

0

P
(
1 < Z ≤ a−1/αR

)
da

= P (Z ≤ 1) +

∫ 1

0

P
(
1 < Z ≤ a−1/αR

)
da

= P (Z ≤ 1) +

∫ 1

0

(
P
(
Z ≤ a−1/αR

)
− P (Z ≤ 1)

)
da

=

∫ 1

0

P
(
Z ≤ a−1/αR

)
da.

In order to compute the previous integral, we need to derive the CDF of Z. From

the definition of Z and by independence of W1 and W2, it is clear that, for any z > 0,

P (Z ≤ z) = P
(
W1 ≥

F̄−1(tx)

z

)
P
(
W2 ≥

F̄−1(ty)

z

)
.

From now on, assume without loss of generality that x ≥ y since c(x, y) = c(y, x)

(because the random variables X and Y are exchangeable). Then F̄−1(tx) ≤ F̄−1(ty).

The previous probability can take 3 different forms:

P (Z ≤ z) =


(
F̄−1(tx)F̄−1(ty)

)−αW z2αW , if z ≤ F̄−1(tx)(
F̄−1(ty)

)−αW zαW , if F̄−1(tx) < z ≤ F̄−1(ty)

1, if z > F̄−1(ty)

.

When substituting z = a−1/αR , for a ∈ (0, 1), notice that we are in the three

preceding cases, respectively, when
a ≥

(
F̄−1(tx)

)−αR(
F̄−1(ty)

)−αR ≤ a <
(
F̄−1(tx)

)−αR

a <
(
F̄−1(ty)

)−αR

.
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This allows us to write

Q(tx, ty) =

∫ (F̄−1(ty))
−αR

0

da+
(
F̄−1(ty)

)−αW

∫ (F̄−1(tx))
−αR

(F̄−1(ty))
−αR

a
−αW

αR da

+
(
F̄−1(tx)F̄−1(ty)

)−αW

∫ 1

(F̄−1(tx))
−αR

a
−2

αW
αR da. (2.55)

Since we only need (2.9) to hold uniformly over a sphere, we may assume that

y ≤ x ≤ 1. Then, (2.54) yields

F̄−1(tx) = (1 +O(tτ ))

(
α∨

α∨ − α∧

)1/α∧

(tx)−1/α∧

and the same for F̄−1(ty). Moreover, the term O(tτ ) is uniform over all (x, y) ∈ [0, 1]2.

The first term in (2.55) is then equal to

(
F̄−1(ty)

)−αR = (1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧
t
αR
α∧ y

αR
α∧ =: Q(1)(tx, ty),

the second one is equal to

(
F̄−1(ty)

)−αW a
1−αW

αR

1− αW

αR

∣∣∣∣∣
(F̄−1(tx))

−αR

a=(F̄−1(ty))
−αR

=
1

1− αW

αR

(
F̄−1(ty)

)−αW
(
F̄−1(tx)−(αR−αW ) − F̄−1(ty)−(αR−αW )

)

= (1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧

1− αW

αR

t
αR
α∧ y

αW
α∧

(
x

αR−αW
α∧ − y

αR−αW
α∧

)
=: Q(2)(tx, ty)

and finally the third one is equal to

(
F̄−1(tx)F̄−1(ty)

)−αW a
1−2

αW
αR

1− 2αW

αR

∣∣∣∣∣
1

a=(F̄−1(tx))
−αR

=
1

1− 2αW

αR

(
F̄−1(tx)F̄−1(ty)

)−αW

(
1−

(
F̄−1(tx)

)2αW−αR

)

= (1 +O(tτ ))

(
1− α∧

α∨

)2αW
α∧

1− 2αW

αR

t2
αW
α∧ (xy)

αW
α∧

(
1−

(
1− α∧

α∨

)αR−2αW
α∧

(tx)
αR−2αW

α∧

)
=: Q(3a)(tx, ty)
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in the case where αR ̸= 2αW , and if αR = 2αW , it is equal to

−
(
F̄−1(tx)F̄−1(ty)

)−αW log
((
F̄−1(tx)

)−αR

)
= (1 +O(tτ ))

(
1− α∧

α∨

)2
αW
α∧

t2
αW
α∧ (xy)

αW
α∧

×

(
− log

(
(1 +O(tτ ))

(
1− α∧

α∨

)αR
α∧

)
+
αR
α∧

(log(1/x) + log(1/t))

)
=

1

2
t2 log(1/t)xy +O(t2)

=: Q(3b)(tx, ty),

where the term O(t2) is uniform over (x, y) ∈ [0, 1]2. We now divide the possible

values of λ = αR/αW in four ranges and determine which of the three terms Q(1), Q(2)

or Q(3) dominates.

If λ ∈ (0, 1)

This is the case where we obtain asymptotic dependence. All three terms are of the

order of t, so they all matter. In this case, α∧ = αR, α∨ = αW and τ = 1/λ − 1.

Therefore,

Q(1)(tx, ty) = (1 +O(tτ ))

(
1− αR

αW

)
ty = (1− λ)ty +O

(
t1+τ

)
,

Q(2)(tx, ty) = (1 +O(tτ ))
1− αR

αW

1− αW

αR

ty
αW
αR

(
x
1−αW

αR − y
1−αW

αR

)
= (1 +O(tτ ))

αR
αW

t
(
y − x

1−αW
αR y

αW
αR

)
= λt

(
y − x1−1/λy1/λ

)
+O

(
t1+τ

)
,

Q(3a)(tx, ty) = (1 +O(tτ ))

(
1− αR

αW

)2αW
αR

2αW

αR
− 1

t
2
αW
αR (xy)

αW
αR

×

((
1− αR

αW

)1−2
αW
αR

(tx)
1−2

αW
αR − 1

)

= (1 +O(tτ ))
1− αR

αW

2αW

αR
− 1

tx
1−αW

αR y
αW
αR +O

(
t
2
αW
αR

)
= λ

1− λ

2− λ
tx1−1/λy1/λ +O

(
t1+τ + t2/λ

)
= λ

1− λ

2− λ
tx1−1/λy1/λ +O

(
t1+τ

)
,
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where in the last line we have used 1 + τ = α∨/α∧ = 1/λ < 2/λ. Therefore in this

case we get

Q(tx, ty) = Q(1)(tx, ty) +Q(2)(tx, ty) +Q(3a)(tx, ty)

= (1− λ)ty + λt
(
y − x1−1/λy1/λ

)
+ λ

1− λ

2− λ
tx1−1/λy1/λ +O

(
t1+τ

)
= t

(
y +

(
−λ+ λ

1− λ

2− λ

)
x1−1/λy1/λ

)
+O

(
t1+τ

)
= t

(
y − λ

2− λ
x1−1/λy1/λ

)
+O

(
t1+τ

)
.

If λ ∈ (1, 2)

Here again, all three terms are of the order of tλ so they all matter. Note that here and

in the next two cases, α∧ = αW , α∨ = αR and τ = λ− 1. Through similar calculations

as before, we obtain this time

Q(1)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

) αR
αW

t
αR
αW y

αR
αW =

(
1− 1

λ

)λ
tλyλ +O

(
tλ+τ

)
,

Q(2)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

) αR
αW

1− αW

αR

t
αR
αW y

(
x

αR
αW

−1 − y
αR
αW

−1
)

=

(
1− 1

λ

)λ−1

tλ
(
xλ−1y − yλ

)
+O

(
tλ+τ

)
,

Q(3a)(tx, ty) = (1 +O(tτ ))

(
1− αW

αR

)2
2αW

αR
− 1

t2xy

((
1− αW

αR

) αR
αW

−2

(tx)
αR
αW

−2 − 1

)

= (1 +O(tτ ))

(
1− 1

λ

)2
2
λ
− 1

t2xy

((
1− 1

λ

)λ−2

(tx)λ−2 − 1

)

= (1 +O(tτ ))

(
1− 1

λ

)λ
2
λ
− 1

tλxλ−1y +O
(
t2
)

= λ

(
1− 1

λ

)λ
2− λ

tλxλ−1y +O
(
tλ+τ + t2

)
= λ

(
1− 1

λ

)λ
2− λ

tλxλ−1y +O
(
t(2λ−1)∧2) .

Therefore, Q can be calculated as

Q(tx, ty) = Q(1)(tx, ty) +Q(2)(tx, ty) +Q(3a)(tx, ty)
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=

(
1− 1

λ

)λ−1

tλ
((

1− 1

λ

)
yλ + xλ−1y − yλ + λ

1− 1
λ

2− λ
xλ−1y

)
+O

(
t(2λ−1)∧2)

=

(
1− 1

λ

)λ−1

tλ
(
−1

λ
yλ +

(
1 + λ

1− 1
λ

2− λ

)
xλ−1y

)
+O

(
t(2λ−1)∧2)

=

(
1− 1

λ

)λ−1

tλ
(

1

2− λ
xλ−1y − 1

λ
yλ
)
+O

(
t(2λ−1)∧2) .

If λ = 2

In this case, αR/α∧ = 2, so we easily see that both Q(1)(tx, ty) and Q(2)(tx, ty) are

O(t2). Because the term Q(3b) is of the order of t2 log(1/t), it dominates the preceding

two by a factor of log(1/t). Therefore,

Q(tx, ty) = Q(3b)(tx, ty) +O
(
t2
)
=

1

2
t2 log(1/t)xy +O

(
t2
)
.

If λ ∈ (2,∞)

Once again, the terms Q(1) and Q(2) are dominated by the third term; they are both

of the order of tλ, whereas the third term is of the order of t2. Therefore,

Q(tx, ty) = Q(3a)(tx, ty) +O
(
t

αR
αW

)
= (1 +O(tτ ))

(
1− αW

αR

)2
1− 2αW

αR

t2xy

(
1−

(
1− αW

αR

) αR
αW

−2

(tx)
αR
αW

−2

)
+O

(
t

αR
αW

)
= (1 +O(tτ ))

(
1− 1

λ

)2
1− 2

λ

t2xy +O
(
tλ
)

=

(
1− 1

λ

)2
1− 2

λ

t2xy +O
(
t(2+τ)∧λ

)
=

(
1− 1

λ

)2
1− 2

λ

t2xy +O
(
tλ
)
,

because, in the last line, 2 + τ = λ+ 1 > λ.

2.10.2 The case λ = 1

From now on, we assume that αR = αW = α. That is, R,W1,W2 are iid with a

Pareto(α) distribution. Like before, we denote by F̄R and F̄ the survival functions of
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R and of X (and equivalently Y ), respectively. As before, we first find an expression

for F̄ . For any x ≥ 1,

F̄ (x) = P (RW1 > x)

= P
(
R >

x

W1

)
= E

[
F̄R

(
x

W1

)]
= P (W1 > x) +

∫ x

1

(w
x

)α α

wα+1
dw

= x−α + αx−α
∫ x

1

dw

w

= x−α (1 + α log(x)) .

The inverse of this function is given by

F̄−1(y) =

(
−W−1(−y/e)

y

)1/α

,

where W−1 denotes the lower branch of the Lambert W function; for y ∈ [−e−1, 0),

W−1(y) denotes the only solution in x ∈ (−∞,−1] of the equation y = xex. Indeed, it

can be seen by a simple plug-in argument that for any y ∈ (0, 1],

F̄

((
−W−1(−y/e)

y

)1/α
)

= y.

Repeating the steps leading to (2.55), we obtain the following similar integral

representation for Q:

Q(tx, ty) =

∫ (F̄−1(ty))
−α

0

da+
(
F̄−1(ty)

)−α ∫ (F̄−1(tx))
−α

(F̄−1(ty))
−α

a−1da

+
(
F̄−1(tx)F̄−1(ty)

)−α ∫ 1

(F̄−1(tx))
−α
a−2da

=
(
F̄−1(ty)

)−α
+
(
F̄−1(ty)

)−α
log

((
F̄−1(tx)

)−α(
F̄−1(ty)

)−α
)

+
(
F̄−1(tx)F̄−1(ty)

)−α ((
F̄−1(tx)

)α − 1
)

=
(
F̄−1(ty)

)−α(
2 + log

((
F̄−1(tx)

)−α(
F̄−1(ty)

)−α
))

−
(
F̄−1(tx)F̄−1(ty)

)−α
.

The last term in this expression is negligible, compared to the first one, by a factor
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of at least
(
F̄−1(ty)

)−α
, which (we shall see) is small enough to be absorbed by the

term O(q1(t)).

Now, by Corless et al. (1996), Section 4, we may obtain the following expansion of(
F̄−1(t)

)−α
as t→ 0:

(
F̄−1(t)

)−α
=

t

−W−1(−t/e)

=
t

log(e/t) + log log(e/t) + o(1)

=
t

log(1/t) + log log(1/t) +O(1)

=

(
1 +O

(
1

log(1/t)

))
t

log(1/t) + log log(1/t)
.

Note that, since we are only interested in (x, y) ∈ (0, 1]2 and since we assume y ≤ x,

1/ log(1/ty) ≤ 1/ log(1/tx) ≤ 1/ log(1/t). Plugging the expansion in our expression

for Q yields

Q(tx, ty) =

{
1 +O

(
1

log(1/t)

)}
ty

log(1/ty) + log log(1/ty)

×

2 + log


{
1 +O

(
1

log(1/t)

)}
tx

log(1/tx)+log log(1/tx){
1 +O

(
1

log(1/t)

)}
ty

log(1/ty)+log log(1/ty)


+O

((
t

log(1/t) + log log(1/t)

)2
)

=

{
1 +O

(
1

log(1/t)

)}
ty

log(1/t) + log log(1/t) +O(log(1/y))

×
(
2 + log

({
1 +O

(
1

log(1/t)

)}
×x
y

log(1/t) + log log(1/t) +O(log(1/y))

log(1/t) + log log(1/t) +O(log(1/x))

))
+O

((
t

log(1/t) + log log(1/t)

)2
)

(2.56)

Note that the first term thereof can be written as

ty

log(1/t) + log log(1/t) +O(log(1/y))
=

ty

log(1/t) + log log(1/t)

{
1 +O

(
log(1/y)

log(1/t)

)}
=

ty

log(1/t) + log log(1/t)

{
1 +O

(
1

log(1/t)

)}
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because as y approaches 0, the term log(1/y) gets absorbed by the term y on the

numerator. Furthermore,

x

y

log(1/t) + log log(1/t) +O(log(1/y))

log(1/t) + log log(1/t) +O(log(1/x))
=
x

y

{
1 +O

(
log(1/x) + log(1/y)

log(1/t)

)}
=
x

y

{
1 +O

(
log(1/y)

log(1/t)

)}
.

Thus the log term in (2.56) equals

log

(
x

y
+O

(
x

y

log(1/y)

log(1/t)

))
= log

(
x

y

)
+O

(
x
y
log(1/y)
log(1/t)

x/y

)

= log

(
x

y

)
+O

(
log(1/y)

log(1/t)

)
,

where we have used the fact that, for any a ≥ 1 and b ≥ 0, log(a+ b) ≤ log(a) + b/a

(recall that x/y ≥ 1). Piecing everything together, (2.56) may be rewritten as

Q(tx, ty) =
ty

log(1/t) + log log(1/t)

×
(
2 + log

(
x

y

)
+O

(
log(1/y)

log(1/t)

)){
1 +O

(
1

log(1/t)

)}
=

ty

log(1/t) + log log(1/t)

(
2 + log

(
x

y

)){
1 +O

(
1

log(1/t)

)}
,

once again because the term log(1/y) is absorbed by y as y approaches 0. Recalling

that we assumed y ≤ x, the claim follows. □

2.11 A few words on the computational complexity of the

method in spatial problems

Both estimators we propose in the spatial setting (defined in (2.16) and (2.17))

essentially rely on the evaluation of bivariate functions and as such are much faster

than methods based on full likelihood (especially if the number of locations is large).

A comparison with pairwise likelihood depends on the cost of likelihood evaluations

in the particular model under consideration and the type of weight functions that we

choose. For the sake of brevity we will focus on the estimator ϑ̂ from (2.16); similar

arguments apply to ϑ̃ from (2.17) with obvious modifications.

Typically, we expect that ϑ̂ can be computed faster than a pairwise likelihood-

based estimator. The main computational burden arises when computing the pairwise
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empirical integrals
∫
g(x, y)Q̂(s)(kx/n, ky/n)dxdy and the corresponding estimators

θ̂
(s)
n . In computing those estimators, when finding the minimizer of∥∥∥∫ g(x, y)Q̂(s)(kx/n, ky/n)dxdy − ζ

∫
g(x, y)cθ(x, y)dxdy

∥∥∥
through numerical optimization, only population level integrals

∫
g(x, y)cθ(x, y)dxdy

need to be re-computed for each optimization step. For specific models (such as

the inverted Brown–Resnick process considered in our application) those integrals

have simple analytic expressions, which additionally speeds up the computation. In

comparison, the likelihood of a bivariate extreme value model may be substantially

more costly to compute, and it needs to be evaluated at every optimization step.

The above procedure only needs to be completed once and can easily be parallelized

by considering pairs independently. Once the estimators θ̂
(s)
n are available, the objective

function in (2.16) only depends on evaluating the low-dimensional functions h(s). Again,

in our example those are very simple analytic functions.

To give a rough idea of the computation times for the proposed methods in a

specific example, we report below average computation times for the spatial simulation

study in Section 2.5.2, with d = 40 locations (corresponding to 780 pairs), n = 5000

and a few different values of m. All computation times are for computing both spatial

estimators simultaneously (but the time to compute only one is not so different since

most of the “pairwise” steps leading to each estimator are the same). The values

given are averaged based on 100 repetitions and the values in parenthesis are standard

deviations. All computations were executed on a personal laptop with a 2.5GHz Intel

Core i5-7200U processor without utilizing parallel computation.

m 25 100 250 500 1000

time (seconds) 9.6 (0.6) 9.5 (0.3) 9.6 (0.4) 9.8 (0.3) 9.8 (0.3)

Table 2.2: Computation time as a function of m

2.12 Additional simulation results

This section contains additional simulation results not included in Section 2.5.

2.12.1 Bivariate distributions

The following scatter plots represent data from each of the three bivariate models

M1–M3 found in Section 2.5.1. For illustration purposes, there is no additive noise

and the marginals are transformed to unit exponential.
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Figure 2.10: Samples of 1 000 data points from the inverted Hüsler–Reiss distribution with parameter

θ equal to 0.6, 0.75 and 0.9, from left to right. The marginal distributions are scaled to unit

exponential.
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Figure 2.11: Samples of 1 000 data points from the inverted asymmetric logistic distribution with

parameter θ equal to (0.72, 0.72), (0.75, 0.91) and (0.91, 0.91), from left to right. The marginal

distributions are unit exponential.
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Figure 2.12: Samples of 1 000 data points from the Pareto random scale model with parameter

λ equal to 0.4, 1 and 1.6, from left to right. The marginal distributions are approximately unit

exponential.

Sensitivity with respect to the weight function

Recall the weight function in (2.22) that is used throughout Section 2.5. It is composed

of the weighted indicator functions of the five rectangles I1 := [0, 1]2, I2 := [0, 2]2,

I3 := [1/2, 3/2]2, I4 := [0, 1]×[0, 3] and I5 := [0, 3]×[0, 1]. As explained in Section 2.5.1,

those rectangles are chosen specifically to ensure identifiability in every model, so that

a unique weight function may be used for all simulations.

We now consider different subsets of the five rectangles above and repeat the

simulation study with each of the associated lower dimensional weight functions.
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Precisely, we define g(1) as the function g in (2.22) and by the same principle we

construct g(2), . . . , g(7), using the rectangles in Table 2.3.

Weight fct. g(1) g(2) g(3) g(4) g(5) g(6) g(7)

Rectangles I1, I2, I3, I4, I5 I1, I2 I1, I3 I1, I4, I5 I1, I2, I3 I1, I2, I4, I5 I1, I3, I4, I5

Table 2.3: Rectangles used to construct each weight function.

We repeat the simulation study from Section 2.5.1; 1 000 data sets of size n = 5 000

are drawn from each of the three models, with the same noise mechanism as before,

and from each data set seven estimators are computed based on the seven weight

functions. We use the values k that were deemed good previously, that is 800 for

the two inverted max-stable models (M1 and M2) and 400 for the Pareto random

scale model (M3). For each model and each parameter value, we compare the weight

functions based on the estimated RMSE of the M-estimator in Figure 2.13.

In the inverted Hüsler–Reiss model, the parameter has a one-to-one relation with

the coefficient of homogeneity 1/η of c. In order to identify that coefficient, it is

sufficient to compare the integral of c over the rectangles I1 and I2. It can moreover

be deduced from the developments in Section 2.9 that in this model, the bias arising

from the pre-asymptotic approximation of c is largest around the axes. Thus, as can

be observed below, adding the non required rectangles I4 and I5, which contain a

large portion of the axes, adds bias to the estimator. The best strategy for this model

seems to be using I1, I2 and possibly I3.

In contrast, the parameter in the inverted asymmetric logistic model is not identifi-

able if the rectangles used are all symmetric, since then (θ1, θ2) cannot be distinguished

from (θ2, θ1). Therefore the estimator is not uniquely defined when neither I4 nor

I5 is used, so the functions g(2), g(3) and g(5) were not included. It is to be noted

that g(4) does not include either of I2 and I3, and as such is not able to estimate the

homogeneity coefficient θ1 + θ2 well, even if it is able to recover the asymmetry. This

explains the monotonic behavior of the error with respect to θ1 + θ2. The other three

weight functions perform similarly to each other.

Finally, in the Pareto random scale model, the weight function g(2) only estimates

the homogeneity and as such, it is unable to distinguish the parameters in the range

(0, 1), corresponding to asymptotic dependence. It was thus ignored. Among the

other functions, the ones that use I4 and I5 (g(1), g(4), g(6), g(7)) all have a similar

performance whereas the other two (g(3) and g(5)) incur a noticeably larger error. It

seems that those rectangles help estimating characteristics that are strongly different

from the coefficient of homogeneity, which explains why they significantly reduce the
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RMSE under asymptotic dependence (λ < 1).
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Figure 2.13: RMSE of the M-estimator in the models M1–M3 as a function of the parameter, based

on 1 000 data sets of size n = 5 000, k = 800 (for M1 and M2) and k = 400 (for M3). Colors represent

the seven weight functions from Table 2.3.

2.12.2 Spatial models

Figure 2.14 shows the distribution of the distances of all the pairs that are used in

the analysis in Section 2.5.2. Figures 2.15 and 2.16 present the same results as in

Section 2.5.2 when the estimator (2.17) is used instead of (2.16).



CHAPTER 2. ESTIMATION UNDER ASYMPTOTIC DEPENDENCE AND INDEPENDENCE 94

Distance (units of latitude)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5
0

20
40

60
80

10
0

12
0

Figure 2.14: Distribution of the distances ∆(s) for the 780 pairs used.

100 200 300 400 500

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

m

B
ia

s 
an

d 
R

M
S

E

100 200 300 400 500

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

m

B
ia

s 
an

d 
R

M
S

E

100 200 300 400 5000.
02

6
0.

03
0

0.
03

4
0.

03
8

m

M
ea

n 
su

pr
em

um
 e

rr
or

Figure 2.15: Left and middle columns: Bias (solid line) and RMSE (dotted line) of the estimators of

the two spatial parameters α (left) and β (middle) as a function of m. Right: Mean of the supremum
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(s)
n (green) and spatial estimator θ(∆(s); α̂, β̂) (blue) based on the d = 40 locations.

Right panel: 50 sampled curves θ(·; α̂, β̂). Blue represents the true curve θ(·;α, β).



Chapter 3

Learning extremal graphical models

in high dimensions

3.1 Introduction

Extreme value theory plays an important role in risk quantification of rare events

such as floods, heatwaves or financial crises (e.g., Katz et al., 2002; Poon et al., 2004;

Engelke et al., 2019a). The univariate case is well understood; generalized extreme

value and Pareto distributions allow for a parsimonious description of distributional

tail of random variables. In dimension d ≥ 2, the tail dependence between different

components of a random vector X = (X1, . . . , Xd) does not follow a parametric model

and can become arbitrarily complex. When the dimension is large, concepts such as

sparsity or dimension reduction become crucial to obtain methods that are statistically

sound and practically feasible; see Engelke and Ivanovs (2021) for a review of recent

developments.

One popular approach to obtain interpretable dependence models for a random

vectors X in high dimensions relies on graphical modeling (Lauritzen, 1996). Condi-

tional independence relations between pairs of variables are described by the absence

of edges in a graph G = (V,E) with vertex set V = {1, . . . , d} and edges E ⊂ V × V .

Graphical models are particularly well studied for multivariate normal distributions

where conditional independence relations are encoded as zeroes in the precision matrix

(Lauritzen, 1996, Chapter 5).

For distributions arising in the setting of extreme value analysis, graphical modeling

has been more challenging. Broadly speaking, there are two main approaches to

modeling asymptotically dependent extremes. The first approach considers component-

wise maxima of blocks of random vectors and leads to the notion of max-stable

distributions; we refer the reader to Beirlant et al. (2004, Chapter 8) and de Haan and

95
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Ferreira (2006, Chapter 6). For such distributions, Gissibl and Klüppelberg (2018),

Klüppelberg and Lauritzen (2019) and Améndola et al. (2022) study max-linear models

on directed acyclic graphs. The distributions considered in this line of work do not

have densities, and a general result by Papastathopoulos and Strokorb (2016) shows

that there exist no non-trivial density factorization of max-stable distributions on

graphical structures.

The second approach relies on multivariate Pareto distributions, which arise as

limits of conditional distributions of X given that at least one of its components

is large (Rootzén and Tajvidi, 2006; Rootzén et al., 2018b). While multivariate

Pareto distributions inherit certain structural properties such as homogeneity from

their definition through limits, their class is still very flexible and too large to allow

for efficient and interpretable inference in high dimensions. Classical conditional

independence is not suited for these distributions since they are not supported on

a product space. Engelke and Hitz (2020) overcome this by proposing new notions

of conditional independence and extremal graphical models. They show that these

definitions naturally link to density factorization and enable efficient inference on

extremal graphical models; see also Asenova et al. (2021). Certain extremal graphical

structures are known to arise as the extremes of regularly varying Markov trees (Segers,

2020) and Markov random fields on block graphs (Asenova and Segers, 2021).

The underlying graph plays a key role in graphical modeling. This graph is

typically unknown and needs to be estimated in a data driven way. One may consider

different levels of generality for the class of graph structures. Figure 3.1 shows four

different graphs with increasingly complex structure: from left to right, a tree, a

block graph, a general decomposable graph, and finally a non-decomposable graph. In

general, estimating more complex graphs requires more assumptions on the underlying

distribution. In the non-extreme world, two important cases correspond to graphical

models on trees, which can be estimated non-parametrically (Liu et al., 2011), and

multivariate normal distributions, for which general graphs can be estimated through

the corresponding precision matrix; see Meinshausen and Bühlmann (2006); Yuan and

Lin (2007); Friedman et al. (2008) among many others.

To date, we are aware of only two approaches to estimating extremal graph

structures, both of which are only applicable to fairly simple graphs or have other

limitations. In their application to river discharge data, Engelke and Hitz (2020) use

an ad-hoc forward selection method where edges are added one after the other to an

initial tree to create a simple block graph (second from left in Figure 3.1). Block graphs

are decomposable and the intersection of their cliques are only allowed to be singletons.

As such, they are fairly close to tree structures and have rather limited flexibility for
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general applications. This was also noted in several discussion contributions in Engelke

and Hitz (2020), pointing out the need for estimation techniques for more general

graphs. In addition to these limitations, the forward selection procedure is a heuristic

method that does not guarantee consistent structure recovery. It moreover requires

the choice of a prior tree, and is sensible to this choice. Engelke and Volgushev (2020)

study structure estimation of extremal tree structures. They introduce the extremal

variogram and show that it can be used in a minimum spanning tree algorithm for

consistent tree recovery in a completely non-parametric way.

For more general graphs, such as the two graphs on the right of Figure 3.1, no

methods that guarantee consistent graph recovery exist in the world of extremes. In

this chapter, we propose a general methodology to learn arbitrary graphs for the class

of Hüsler–Reiss distributions (Hüsler and Reiss, 1989). Those distributions share many

attractive properties of multivariate normal distributions and have been widely used in

modeling multivariate and spatial extremes (e.g., Davison et al., 2012b; Engelke et al.,

2015). They are parametrized by a d× d-dimensional variogram matrix Γ, which can

be shown to contain the underlying graph structure. More precisely, Engelke and Hitz

(2020) show that for any m ∈ V , the Farris transform Σ(m) ∈ Rd×d (Farris et al., 1970)

with entries

Σ
(m)
ij =

1

2
(Γim + Γjm − Γij) , i, j ∈ V,

encodes information about the extremal conditional independence structure through

sparsity patterns in the entries and row-sums of a certain pseudo-inverse Θ(m) of Σ(m)

to be defined below.

In the present chapter, we develop a structure learning algorithm that leverages

this information and leads to consistent recovery of arbitrary graphs. Due to the

special nature of Hüsler–Reiss distributions, the entire graph structure cannot be

recovered from the zero pattern of a single matrix Θ(m), and estimators across all

values of m ∈ V need to be aggregated. Our approach therefore uses a majority voting

algorithm to combine estimated sub-graphs for all m ∈ V , which are obtained from

base learners derived from the theory of Gaussian graphical models. In principle, any

base learner can be used, and we provide a thorough theoretical investigation for two

of the most popular choices: neighborhood selection (Meinshausen and Bühlmann,

2006) and graphical lasso (Yuan and Lin, 2007; Friedman et al., 2008). We prove that

consistent graph recovery is possible even when the dimension grows exponentially in

the number of extreme samples.

A key difficulty in our analysis lies in the fact that, in practice, we typically only

observe realizations whose tail can be approximated by a Hüsler–Reiss distribution,

rather than from the latter, limiting model itself. Hence estimators of the variogram
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matrix Γ use only the largest observations from a sample that need to be transformed

marginally. This makes standard concentration results in the literature inapplicable,

and a substantial part of our theoretical contribution is devoted to derive concentration

bounds for an empirical version of Γ. Such inequalities provide a crucial ingredient for

our proof of consistent graph recovery in increasing dimensions. The results are also

of broader interest in multivariate extremes beyond Hüsler–Reiss distributions. For

instance, the tail bounds we derive play a crucial role in the theoretical developments

in Engelke and Volgushev (2020) and we expect that they can be leveraged elsewhere.

Necessary background information on multivariate extreme value distributions

in general and Hüsler–Reiss models in particular is collected in Section 3.2. The

estimation methodology is described in detail in Section 3.3. Section 3.4 contains

all the theoretical results while finite-sample performance of the proposed methods

is illustrated in a simulation study in Section 3.5. A data illustration is provided in

Section 3.6 while potential extensions and directions for future work are described

in Section 3.7. Section 3.8 contains additional numerical results that complement

Sections 3.5 and 3.6. The rest of the chapter is dedicated to the proofs of all the

theoretical results. We start with the theory related to graph recovery and precision

matrix estimation (Sections 3.9 and 3.10), followed by the proof of Theorem 3.3 and

related auxiliary results (Sections 3.11 and 3.12).

Y2 Y1

Y3

Y4

Y2 Y1

Y3

Y4

Y1 Y2

Y3 Y4

Y1 Y2

Y3 Y4

Figure 3.1: Four graph structures on the node set V = {1, . . . , 4}. From left to right: tree graph,

block graph, decomposable graph, non-decomposable graph.

Notation Throughout the chapter we will use the following notation. For square

matrices A with real eigenvalues, we let λmin(A) denote the smallest eigenvalue of

A. The notation ∥x∥∞ and ∥A∥∞ will be used to denote the element-wise sup-norm

of vectors x and matrices A. |||A|||p will denote the Lp/Lp operator norm of a (not

necessarily square) matrix A. For a natural number d ≥ 1 let [d] := {1, . . . , d}. For
vectors x = (x1, . . . , xd)

⊤ ∈ Rd (or similarly for random vectors X = (X1, . . . , Xd)
⊤)

and subsets J = {j1, . . . , jk} ⊆ [d], define the vector xJ := (xj1 , . . . , xjk)
⊤ where

j1 < j2 < · · · < jk. Vectors with all entries 1 and 0 will be denoted with 1 and 0,

respectively; the dimension will be clear form the context. Inequalities between vectors
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are understood component-wise. The notation x\J will be used to denote the vector

xV \J , and if J = {j} we will also write x\j. We use similar notations to index rows

and columns of matrices A.

3.2 Background

3.2.1 Multivariate Pareto distributions and domains of attraction

Let Y = (Yj : j ∈ V ) be a d-dimensional random vector indexed by V = {1, . . . , d}
with support contained in the space L = {y ≥ 0 : ∥y∥∞ > 1}. The random vector Y

is said to have a multivariate Pareto distribution if P(Y1 > 1) = · · · = P(Yd > 1) and

if it satisfies the homogeneity property

P(Y ∈ tA) = t−1P(Y ∈ A), t ≥ 1, (3.1)

where for any Borel subset A ⊂ L we define tA = {ty : y ∈ A} (Rootzén and

Tajvidi, 2006). The homogeneity implies that for any i ∈ V the univariate conditional

margin satisfies P(Yi ≤ x |Yi > 1) = 1 − 1/x for x ≥ 1, that is, Yi |Yi > 1 follows a

standard Pareto distribution. The class of multivariate Pareto distributions is very rich

and contains parametric sub-families such as the extremal logistic (Tawn, 1990) and

Dirichlet (Coles and Tawn, 1991) distributions. Of particular interest in the present

chapter is the family of Hüsler–Reiss distributions (Hüsler and Reiss, 1989); they are

often considered the “Gaussian distributions of extremes” and will be described in

Section 3.2.3 in detail.

Multivariate Pareto distributions arise as natural models in the study of multivariate

extreme events, since they are the only possible limits of so-called threshold exceedances.

To formalize this, consider a random vector X = (Xj : j ∈ V ) in Rd with eventually

continuous marginal distributions Fi and define F (x) = (F1(x1), . . . , Fd(xd)). If for

some random vector Y the limit relation

lim
q↓0

P(F (X) ≤ 1− q/x |F (X) ̸≤ 1− q) = P(Y ≤ x), (3.2)

holds at all continuity points x ∈ L of P(Y ≤ ·), we say that X is in the domain of

attraction of Y .

In this case, the limit Y is necessarily a multivariate Pareto distribution, and

conversely any multivariate Pareto distribution can appear as a limit in (3.2); see

Engelke and Volgushev (2020, Proposition 6) for a more formal statement. Note that

the margins of X are standardized via a marginal transformation, so this is really an

assumption on the extremal dependence structure of X. The notation F (X) ̸≤ 1− q
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means that at least one component of the vector F (X) exceeds 1− q, equivalently at

least one component Xj of X exceeds its high marginal quantile F−1
j (1− q), j ∈ V .

The above limit can thus be interpreted as a model for realizations of X with at least

one extreme component.

There are several other popular objects that are routinely used to describe the

tails of multivariate random vectors. For instance, one can show that (3.2) implies

existence of the limit

L(x) = lim
q↓0

q−1P(F (X) ̸≤ 1− qx), x ∈ [0,∞)d. (3.3)

The function L is called the stable tail dependence function of X and is a popular

object in the study of multivariate extremes (Huang, 1992; Einmahl et al., 2012;

Fougères et al., 2015). The link between the distribution of Y and L is given by the

relation

L(x) =
P(Y ̸≤ 1/x)

P(Y1 > 1)
, x ∈ L.

3.2.2 Extremal graphical models

Since the support space L of a multivariate Pareto distribution Y is not a product

space, the set of auxiliary random vectors Y (m) = (Y |Ym > 1), m ∈ V , plays

an important role in the analysis. In fact, they are the basis for the definition of

conditional independence for the random vector Y in Engelke and Hitz (2020). For

disjoint sets A,B,C ⊂ V , we say that YA is conditionally independent of YC given

YB if the usual conditional independence holds for all auxiliary vectors:

∀m ∈ V : Y
(m)
A ⊥ Y

(m)
C |Y (m)

B . (3.4)

In this case, we speak of extremal conditional independence and denote it by YA ⊥e

YC |YB.
In graphical modeling, conditional independence is connected to graph structures to

define sparse probabilistic models (Lauritzen, 1996). An undirected graph G = (V,E)

is a set of nodes V = {1, . . . , d} and a collection of edges E ⊂ V ×V of unordered pairs

of distinct nodes. With the notion of extremal conditional independence, we define an

extremal graphical model as a multivariate Pareto distribution Y that satisfies the

pairwise Markov property,

Yi ⊥e Yj |Y\{i,j}, if (i, j) /∈ E. (3.5)

When Y possesses a positive continuous density, the graph G is necessarily connected.
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In this case, the pairwise Markov property is equivalent to the stronger global Markov

property (Lauritzen, 1996, Chapter 3). If G is in addition decomposable, then the

density factorizes on the graph into lower-dimensional densities, and inference is

considerably more efficient thanks to the sparsity; see Engelke and Hitz (2020) for

details.

A summary statistic for extremal dependence in Y that will turn out to be useful

for graph structure learning is the extremal variogram (Engelke and Volgushev, 2020).

The extremal variogram rooted at node m ∈ V is defined as the matrix Γ(m) with

entries

Γ
(m)
ij = Var

{
log Y

(m)
i − log Y

(m)
j

}
, i, j ∈ V, (3.6)

whenever the right-hand side exists and is finite. For an extremal graphical model on a

tree, for any m ∈ V , the minimum spanning tree with weights Γ
(m)
ij , i, j ∈ V , recovers

the underlying tree structure corresponding to extremal conditional independence.

This can be exploited for non-parametric consistent tree recovery without distributional

assumptions (Engelke and Volgushev, 2020). Extremal variograms will also play a

crucial role in learning general extremal graph structures.

3.2.3 Hüsler–Reiss distributions

Let Sd0 be the set of symmetric d× d-matrices with zero diagonal and non-negative

entries. A conditionally negative definite matrix Γ ∈ Sd0 is defined by the property that

x⊤Γx ≤ 0 for all x ∈ Rd with x⊤1 = 0. If the inequality is strict except for x = 0,

then Γ is in the cone Cd ⊂ Sd0 of strictly conditionally negative definite matrices, which

we will also call variogram matrices. Let further Pd−1 denote the space of symmetric,

strictly positive definite (d− 1)× (d− 1)-matrices.

The family of d-dimensional Hüsler–Reiss (Pareto) distributions consists of multi-

variate Pareto distributions parametrized by Γ ∈ Cd (Hüsler and Reiss, 1989). For

each m ∈ V , the Farris transform φm : Cd → φm(Cd) (Farris et al., 1970) maps a given

Γ to the matrix

Σ
(m)
ij :=

1

2
(Γim + Γjm − Γij) , i, j ∈ V. (3.7)

The Farris transform is a bijection with inverse φ−1
m : φm(Cd) → Cd, where the image

φm(Cd) consists of all matrices in Pd−1 with a row and column of zeroes inserted in

the mth position. Consequently, the submatrix of Σ(m) obtained by removing this

row and column is invertible. Let Θ(m) be obtained by inverting that submatrix and

adding back the row and column of zeros in the mth position, i.e., Θ(m) ∈ Rd×d is
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defined by

Θ
(m)
\m,\m =

(
Σ

(m)
\m,\m

)−1
, (3.8)

and Θ
(m)
im = Θ

(m)
mi = 0, i ∈ V. Then, the density of a Hüsler–Reiss distributed Y with

parameter matrix Γ exists, and for any m ∈ V it can be expressed as

fY (y) ∝ y−2
m

(∏
i ̸=m

y−1
i

)
exp

{
−1

2
ỹ⊤Θ(m)ỹ

}
, (3.9)

where ỹ = log y − 1 log ym + ΓV m/2. The matrix Σ(m) is the covariance matrix of

a transformation of the auxiliary random vector given by (log{Y (m)
i /Y

(m)
m } : i ∈ V ).

From this it is easy to see that extremal variograms in (3.6) at nodes m are given by

φ−1
m (Σ(m)), m ∈ V , and therefore they are all equal to the parameter matrix of the

Hüsler–Reiss distribution, that is, Γ = Γ(1) = · · · = Γ(d).

The importance of the matrices Σ(m) and Θ(m) comes from the fact that the latter

contains the graphical structure of the Hüsler–Reiss distribution Y in its sparsity

pattern. Indeed, for any fixed node m ∈ V and i ̸= j, Engelke and Hitz (2020,

Proposition 3) show that

Yi ⊥e Yj |Y\{i,j} ⇐⇒

Θ
(m)
ij = 0, if i, j ̸= m,∑d
ℓ=1Θ

(m)
iℓ = 0, if j = m.

(3.10)

Relation (3.10) provides the key to learning general graphs for Hüsler–Reiss distribu-

tions through estimating sparse versions of Θ(m).

The following equivalent parametrization of the Hüsler–Reiss distribution was

proposed by Hentschel (2021); see also Röttger et al. (2021) for details. Consider the

d× d matrix Θ with entries

Θij = Θ
(m)
ij , i, j ̸= m, (3.11)

and note that it is well-defined since Θ
(m)
ij = Θ

(m′)
ij for i, j /∈ {m,m′} by Engelke and

Hitz (2020, Lemma 1). The matrix Θ is symmetric, positive semi-definite with rank

d − 1, and it has zero row sums: Θ1 = 0. Let P = Id − 11⊤/d. Then there is a

one-to-one correspondence between the parameter matrix Γ and the matrix Θ given by

Θ = (P (−Γ/2)P )+, where A+ is the Moore–Penrose pseudoinverse of a matrix A. The

matrix Θ uniquely defines the Hüsler–Reiss distribution since the parameter matrix

can be recovered through the inverse Farris transform by Γ = φ−1
m (Θ+). Moreover, it
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contains the graphical structure through the simple relation

Yi ⊥e Yj |Y\{i,j} ⇐⇒ Θij = 0. (3.12)

The matrix Θ is therefore called the Hüsler–Reiss precision matrix of Y .

3.3 Learning Hüsler–Reiss graphical models

3.3.1 EGlearn: a majority voting algorithm

For a Hüsler–Reiss distribution, in view of (3.10), a sparse estimate of Θ(m) contains

information on the conditional independence structure between nodes i, j where

i, j ̸= m. This is equivalent to the presence or absence of edges in the corresponding

extremal graphical model G = (V,E) that are not related to the mth node. This

fact can be exploited by obtaining a sparse estimate of Θ(m), which establishes a link

to the problem of sparse precision matrix estimation and allows us to borrow tools

from the Gaussian graphical models literature. In our case, it is natural to combine

estimated sparsity patterns across different values of m to infer extremal conditional

independence for all possible values of i, j ∈ V . We propose to do this through a

majority voting algorithm.

More formally, for a given m ∈ V and estimator Γ̂ of the variogram matrix Γ,

consider an arbitrary algorithm A, called base learner in what follows, that takes the

submatrix Σ̂
(m)
\m,\m, Σ̂

(m) := φm(Γ̂), as input and returns an estimator of the set of

non-zero entries of Θ
(m)
\m,\m. The output of this algorithm, denoted by Ẑ(m), will be

represented as a (d − 1) × (d − 1) matrix with entries 1 in positions where Θ
(m)
\m,\m

is estimated to be non-zero, and entries 0 elsewhere. Two examples of possible base

learner algorithms are neighborhood selection (Meinshausen and Bühlmann, 2006)

and graphical lasso (Yuan and Lin, 2007; Friedman et al., 2008); they are formally

introduced in Section 3.3.2 below. The base learner A may require the choice of tuning

parameters, as is the case for neighbourhood selection and the graphical lasso, which

can be fixed or data-dependent.

Augmenting the matrix Ẑ(m) with a row and column of zeros in the mth position,

we obtain a d× d matrix Z̃(m). The entries of Z̃(m) outside its mth row and column

are now considered as votes in favor or against the presence of certain edges in the

graph G. Running the algorithm for each m ∈ V results in d such matrices. Those are

then combined into a final graph estimator Ĝ = (V, Ê) using majority voting: an edge

(i, j), i ≠ j, is included in the final graph if and only if a 1 appears in position (i, j) of

more than half of the d− 2 matrices Z̃(m), m /∈ {i, j}. The reason for excluding Z̃(i)
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Y1 Y2

Y3 Y4

Y1 Y2

Y3 Y4

Y1 Y2

Y3 Y4

Y1 Y2

Y3 Y4

Figure 3.2: Illustration of the majority voting algorithm when the true underlying graph is the non-
decomposable graph on the right-hand side of Figure 3.1. Left to right: graphical representation of
the estimated matrices Z̃(m), where the grey node Ym is not considered in the mth step, m = 1, . . . , 4;
black and red edges indicate correctly and incorrectly estimated edges, respectively.

and Z̃(j) from the voting for edge (i, j) is that by (3.10), zeroes in the mth row and

column of Θ(m) are not informative about conditional independence in Y . The steps

described above are summarized in the following algorithm.

Input: variogram estimate Γ̂, base learner algorithm A
Output: extremal graph estimate Ĝ = (V, Ê)

1 initialize Ĝ := (V, ∅)
2 for m ∈ V do

3 initialize Σ̂(m) := φm(Γ̂)

4 obtain a (d− 1)× (d− 1) matrix Ẑ(m) from algorithm A with Σ̂
(m)
\m,\m as

input

5 obtain Z̃(m) by augmenting Ẑ(m) with a row and column of zeros in the mth

position

6 for i, j ∈ V , i ̸= j do

7 if 1
d−2

#
{
m ∈ V \{i, j} : Z̃

(m)
ij = 1

}
> 1

2
then

8 add an edge in Ĝ between nodes i and j

Algorithm 1: EGlearn: general algorithm for learning extremal graphical models.

Figure 3.2 shows an illustration of the majority voting algorithm where the true

underlying graph G = (V,E) is the non-decomposable graph on the right-hand side of

Figure 3.1. In this example, the algorithm would output the true graph Ĝ = G since

exactly the true edges appear in the majority of the cases.

An alternative method that, based on (3.10), not only uses the information in Θ(m)

on nodes i, j ∈ V , but jointly enforces sparsity also on edges related to the mth node,

turns out to be more involved and is discussed in Section 3.7.

3.3.2 Base learners for sparsity estimation

Two classical methods from Gaussian graphical modeling to obtain sparse estimators of

precision matrices are neighborhood selection (Meinshausen and Bühlmann, 2006) and
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graphical lasso (Yuan and Lin, 2007). The original theoretical guarantees for consistent

recovery of the sparsity pattern rely on Gaussian data and empirical covariances as

input. Since the input estimator Σ̂
(m)
\m,\m for the base learner A in our EGlearn in

Algorithm 1 uses neither Gaussian data nor the empirical covariance, we discuss in

this section how the assumptions of sparse estimators for Gaussian distributions can

be relaxed. Related observations were made in Liu et al. (2012) for data that have a

Gaussian copula but are not marginally Gaussian and Loh and Wainwright (2013) for

discrete graphical models.

Throughout this section, we let A ∈ Rp×p denote a symmetric, positive definite

matrix and we are interested in the sparsity pattern of its inverse B = A−1. We aim

to use neighborhood selection and graphical lasso as the base learner algorithm A in

the framework of our EGlearn in Algorithm 1. In this case, in the mth step of the

algorithm, the matrix A = Σ
(m)
\m,\m with p = d− 1, and the interest is in the sparsity

pattern of B = Θ
(m)
\m,\m.

Neighborhood selection

Neighborhood selection was originally proposed by Meinshausen and Bühlmann (2006)

for estimating Gaussian graphical models. Although the motivation in Meinshausen

and Bühlmann (2006) relies on properties of multivariate normal distributions and

their conditional independence, the underlying principle can be used to estimate the

sparsity pattern of the inverse of a general symmetric positive definite matrix. Indeed,

for A positive definite and B its inverse, we have the representation

−B\ℓ,ℓ

Bℓℓ

= (A\ℓ,\ℓ)
−1A\ℓ,ℓ = argmin

β∈Rp−1

{
− 2Aℓ,\ℓβ + β⊤A\ℓ,\ℓβ

}
, ℓ = 1, . . . , p.

The first equation follows from matrix computations using block inversion formulae

(see, for instance, Lauritzen, 1996, Equation (C.4)) and the second from computing

the gradient of the minimization problem. Hence, given access to an estimator Â, the

sparsity pattern in B\ℓ,ℓ can be estimated through the zero entries of

θ̂ := argmin
θ∈Rp−1

{
− 2Âℓ,\ℓθ + θ⊤Â\ℓ,\ℓθ + ρℓ∥θ∥1

}
, (3.13)

where ρℓ denotes a penalty parameter and the L1 penalty is used for enforcing sparse

solutions. The set n̂e(ℓ) of indices of non-zero entries in θ̂ is then taken as an estimate

of the non-zero pattern in the ℓth row of B. The procedure is repeated for each variable

ℓ. Since the matrix B is symmetric, pairs (i, j), (j, i) are added to the estimated set

of non-zero entries if and only if i ∈ n̂e(j) and j ∈ n̂e(i); see Algorithm 2 below.
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To link the above approach to neighborhood selection as proposed in Meinshausen

and Bühlmann (2006), assume that Σ̂ is the sample covariance matrix of W1, . . . ,Wn,

a sample from a p-dimensional Gaussian distribution. Then regressing the variables

W1,ℓ, . . . ,Wn,ℓ on W1,\ℓ, . . . ,Wn,\ℓ via the lasso amounts to solving the problem

argmin
β∈Rp−1

{ 1
n

n∑
i=1

(Wi,ℓ − β⊤Wi,\ℓ)
2 + ρℓ∥β∥1

}
= argmin

β∈Rp−1

{
− 2Σ̂ℓ,\ℓβ + β⊤Σ̂\ℓ,\ℓβ + ρℓ∥β∥1

}
,

where the left–hand side in the equation above was originally considered in Meinshausen

and Bühlmann (2006).

Input: Matrix Â ∈ Rp×p, penalty parameters (ρℓ)ℓ=1,...,p

Output: Estimate Ẑ of sparsity pattern of A−1

1 initialize Ẑ as a matrix of zeros

2 for ℓ = 1, . . . , p do

3 θ̂ := argminθ∈Rp−1

{
− 2Âℓ,\ℓθ + θ⊤Â\ℓ,\ℓθ + ρℓ∥θ∥1

}
4 n̂e(ℓ) := {j = 1, . . . , p : θj ̸= 0}

5 for i = 1, . . . , p, j ̸= i do

6 if i ∈ n̂e(j) and j ∈ n̂e(i) then

7 set Ẑij = Ẑji = 1

Algorithm 2: Sparsity pattern estimation through neighborhood selection.

Graphical lasso

As an alternative to running node-wise regressions as required for neighborhood

selection, Yuan and Lin (2007) suggested to estimate the precision matrix B = A−1

via penalized maximum likelihood, with a penalty on the off-diagonal, element-wise

L1 norm of the matrix:

argmin
Q∈Pp

{
− log detQ+ tr(ÂQ) + ρ∥Q∥1,off

}
, ∥Q∥1,off :=

∑∑
i ̸=j

|Qij|; (3.14)

where Â denotes an estimator of the matrix A. The name “graphical lasso” was

subsequently given to the algorithm that efficiently solves this problem (Friedman

et al., 2008).

In the original procedure of Yuan and Lin (2007), Â denotes the sample covari-

ance matrix of an iid sample of N(0, A) random vectors. Subsequently, Ravikumar

et al. (2011) proved that Gaussianity is not needed and the sparsity pattern of pre-
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cision matrices can be recovered consistently as long as the data used to compute

the empirical covariance matrix satisfy certain tail properties. A close look at the

analysis of Ravikumar et al. (2011) further reveals that there is nothing special about

empirical covariance matrices. More precisely, under certain technical conditions, the

optimization in (3.14) yields an estimator of A−1 with the correct sparsity pattern,

provided that Â is any estimator of A that is close to A in element-wise sup-norm.

These claims will be made precise in Proposition 3.4.

3.3.3 The empirical extremal variogram

The extremal variogram matrix Γ(m) rooted at node m is defined in (3.6) for a

general, not necessarily Hüsler–Reiss, multivariate Pareto distribution Y . In typical

applications we do not observe data from Y but rather from X in the domain of

attraction of Y in the sense of (3.2). A simple computation then implies that

P (Y (m) ≤ x) = lim
q↓0

P
( q

1− F (X)
≤ x

∣∣∣Fm(Xm) > 1− q
)
.

Let (Xt := (Xt1, . . . , Xtd) : t ∈ [n]) be a sample of independent copies of X.

Denoting by F̃i the left-continuous empirical distribution function of X1i, . . . , Xni, the

sample {k
n

1

1− F̃ (Xt)
: F̃m(Xtm) > 1− k/n

}
,

with F̃ (x) := (F̃1(x1), . . . , F̃d(xd)), is an approximate sample from Y (m) if k/n is

sufficiently small. This motivates the empirical extremal variogram rooted at node m

(Engelke and Volgushev, 2020), defined through the conditional variance

Γ̂
(m)
ij := V̂ar

(
log(1− F̃i(Xti))− log(1− F̃j(Xtj))

∣∣∣ F̃m(Xtm) > 1− k/n
)
,

where V̂ar denotes the empirical variance with scaling equal to k−1, the inverse of the

sample size.

When Y has a Hüsler–Reiss Pareto distribution, the population variograms Γ(m),

m ∈ V , are all equal to the parameter matrix Γ. We therefore combine the estimators

into the empirical (extremal) variogram

Γ̂ :=
1

d

∑
m∈V

Γ̂(m). (3.15)

Concentration properties of this estimator will be derived in Section 3.4.2.
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3.4 Consistent extremal graph recovery and concentration of

empirical variograms

In this section we provide theoretical guarantees for Algorithm 1 to correctly recover

the true extremal graph G when either neighborhood selection or graphical lasso is

used as base learner. Our main results on consistent graph recovery are collected in

Section 3.4.1.

A key technical ingredient of the corresponding proofs is a general concentration

bound for the empirical extremal variogram; see Theorem 3.3. This result is obtained

under general domain of attraction conditions and does not require the limiting

multivariate Pareto distribution to be from the Hüsler–Reiss family. This finding is

of independent interest. For instance, the theory of high-dimensional extremal tree

recovery in Engelke and Volgushev (2020) relies on our Theorem 3.3.

As a second ingredient, we establish guarantees on the estimators provided by

neighbourhood selection and graphical lasso when the input matrices are not empirical

covariances of iid Gaussian data. This is a straightforward consequence of the analysis

in Ravikumar et al. (2011) for the graphical lasso but requires more work for neigh-

borhood selection, since classical arguments in Meinshausen and Bühlmann (2006)

explicitly rely on properties of the multivariate normal distribution. We provide a

formal statement in Proposition 3.3 and its proof in Section 3.10.

3.4.1 Consistent recovery of Hüsler–Reiss graphical models

We start by collecting technical assumptions which are needed for graph recovery in the

Hüsler–Reiss case. In what follows, assume that Y has a Hüsler–Reiss distribution on

Rd with parameter matrix Γ ∈ Cd that is an extremal grapical model on the connected

graph G = (V,E). Recall the definitions of the precision matrix Θ and the matrices

Σ(m) and Θ(m) in Section 3.2.3.

Our first assumption is a second order condition that essentially controls the speed

of convergence in (3.3). For notational reasons, it turns out to me more convenient to

work with slightly different versions of the probabilities appearing in (3.3).

Assumption 3.1 (Extended second order). The marginal distribution functions

F1, . . . , Fd are continuous and there exist constants ξ > 0 and K <∞ such that for

all triples of distinct indices J = (i, j,m) and q ∈ (0, 1],

sup
x∈[0,q−1]2×[0,1]

∣∣∣q−1P
(
FJ(XJ) > 1− qx

)
− P(YJ > 1/x)

P(Y1 > 1)

∣∣∣ ≤ Kqξ, (3.16)

where FJ(xJ) = (Fi(xi), Fj(xj), Fm(xm)).
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This formulation differs from classical second order conditions in that the supremum

is taken over sets that grow with q. For Hüsler–Reiss distributions it is implied by

a standard second order condition on bounded sets (see Assumption 3.3 in the next

section) which is routinely imposed in theoretical developments for multivariate extreme

value theory (Einmahl et al., 2012; Fougères et al., 2015; Engelke and Volgushev,

2020); see Proposition 3.1 in Section 3.4.2 for details.

Depending on whether we use neighborhood selection or graphical lasso as base

learners in Algorithm 1, additional assumptions are needed on the matrices Σ(m), Θ(m)

and Θ that parametrize the limiting model Y . We start by discussing neighborhood

selection.

Let s denote the maximal degree, that is, the largest number of edges connected to

any node, of the graph G. For m, ℓ ∈ V , m ̸= ℓ, define the set of all nodes, except for

node m, that are connected to node ℓ as

Sm,ℓ := {i ∈ V \ {m, ℓ} : Θiℓ ̸= 0} ⊂ V \ {m}

and its complement Scm,ℓ taken in V \ {m}. Define the quantities

θnsmin := min
i,ℓ:Θiℓ ̸=0

|Θiℓ|/Θℓℓ

λ := min
m,ℓ∈V,m ̸=ℓ

λmin(Σ
(m)
Sm,ℓ,Sm,ℓ

),

κ := max
m,ℓ∈V,m ̸=ℓ

∣∣∣∣∣∣∣∣∣Σ(m)
Sc
m,ℓ,Sm,ℓ

∣∣∣∣∣∣∣∣∣
∞
,

ϑ := max
m,ℓ∈V,m ̸=ℓ

∣∣∣∣∣∣∣∣∣(Σ(m)
Sm,ℓ,Sm,ℓ

)−1
∣∣∣∣∣∣∣∣∣

∞
.

Additionally, consider the neighborhood selection incoherence parameter

ηns := min
m,ℓ∈V,m ̸=ℓ

ηnsm,ℓ, ηnsm,ℓ := 1−
∣∣∣∣∣∣∣∣∣Σ(m)

Sc
m,ℓ,Sm,ℓ

(Σ
(m)
Sm,ℓ,Sm,ℓ

)−1
∣∣∣∣∣∣∣∣∣

∞
. (3.17)

Incoherence parameters of this sort are known to be a crucial ingredient for support

recovery via the lasso (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006). In

our theory below we will assume that ηns is strictly positive; a technical relaxation to

requiring sufficiently many ηnsm,ℓ being positive is shown in the proof of Theorem 3.1.

The majority voting in Algorithm 1 applies the base learner algorithm to d distinct

problems, namely for every m ∈ V . Using neighborhood selection as the base learner

in turn requires the choice of d tuning parameters, resulting in a total of d(d − 1)

tuning parameters ρnsm,ℓ,m ∈ V, ℓ ∈ [d− 1], where ρnsm,1, . . . , ρ
ns
m,d−1 correspond to the

tuning parameters in the mth step of Algorithm 1. Define ρnsmin := minm,ℓ ρ
ns
m,ℓ and

ρnsmax := maxm,ℓ ρ
ns
m,ℓ.
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Theorem 3.1. Assume (3.16) and that ηns > 0. Let Gns(Γ̂) denote the estimated

graph obtained through neighbourhood selection in Algorithm 1 with penalty parameters

ρnsm,ℓ. Then, as soon as

∥∥Γ̂− Γ
∥∥
∞ < Cns :=

2

3
min

{
λ

2s
,

ηns

4ϑ(1 + κϑ)s
,
θnsmin − ϑρnsmax

2ϑ(1 + κϑ)
,

ρnsminη
ns

8(1 + κϑ)2

}
,

we have Gns(Γ̂) = G.

Assuming that k ≥ nζ for some ζ > 0, log d = o(k/(log k)8) and the quantities

λ, κ, ϑ, ηns are bounded away form zero and infinity, we have

P
(
Gns(Γ̂) = G

)
→ 1, n→ ∞,

provided that ρnsmax < θnsmin/(2ϑ) and (k/n)ξ(log(n/k))2+
√

(log d)/k = o(min(ρnsmin, s
−1)).

In the statement of the second part of the above theorem, we sacrificed generality

for the sake of simplicity. Combining the first statement with the general concentration

bounds on maxm∈V
∥∥Γ̂(m) − Γ(m)

∥∥
∞, which we derive in Section 3.4.2, one can obtain

lower bounds on the probability of correct graph recovery that are explicit in all

constants appearing above. We have opted against providing such explicit expressions

because the resulting terms are lengthy and do not add much in terms of interpretability.

In the same vein, the quantities λ, κ, ϑ, s, ηns are for simplicity taken as the worst case

over m, ℓ. It is possible to introduce versions of λ, κ, ϑ, s, ηns that depend on m, ℓ.

This would allow for sharper but more complex results; in particular, the incoherence

parameters ηnsm,1, . . . , η
ns
m,d−1 would need to be non-negative for only half of the values

m ∈ V . The precise form of this statement is immediate from a close look at the proof

in Section 3.9.

For interpreting the second part of the above theorem, note that the quantity

rk,n := (k/n)ξ(log(n/k))2 + (k−1 log d)1/2 is the order at which ∥Γ̂− Γ∥∞ concentrates

with (k/n)ξ(log(n/k))2 corresponding to the bias and (k−1 log d)1/2 to the stochastic

part; see Theorem 3.3 and the discussion right after for additional details. The quantity

θnsmin can be interpreted as minimal signal strength among edges that are present in

the graph. In order for such edges to be recovered with high probability, we need

a minimal signal condition θnsmin ≫ rk,n. Similarly, the maximal edge degree s must

satisfy s−1 ≫ rk,n. In general, such conditions on minimal signal and maximal edge

degrees are unavoidable for consistent graph recovery. Conditions that are similar

in spirit were also imposed in Meinshausen and Bühlmann (2006) for neighborhood

selection and Ravikumar et al. (2011) for the graphical lasso.

We next discuss guarantees on structure recovery using the graphical lasso as base
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learner for Algorithm 1. Define the set of edges in the graph excluding edges containing

node m, and augmented by self loops, by

Sm := {(i, j) : i, j ∈ V \ {m},Θij ̸= 0},

as well as its complement Scm taken in (V \ {m})2. Let Ω(m) := Σ(m) ⊗ Σ(m) and

define the quantities θglmin := mini ̸=j:Θij ̸=0 |Θij|, κΣ := maxm |||Σ(m)|||∞ and κΩ :=

maxm |||(Ω(m)
Sm,Sm

)−1|||∞. The incoherence parameter for graphical lasso is defined as

ηgl := min
m∈V

ηglm, ηglm := 1− |||Ω(m)
Sc
m,Sm

(Ω
(m)
Sm,Sm

)−1|||∞. (3.18)

Similarly to neighborhood selection, such incoherence parameters play a crucial role in

guarantees for consistent support recovery by the Gaussian graphical lasso (Ravikumar

et al., 2011).

Using graphical lasso as the base learner in Algorithm 1 requires the choice of d

tuning parameters ρgl1 , . . . , ρ
gl
d , one for each step of the loop over m. Define ρglmin :=

minm∈V ρ
gl
m and ρglmax := maxm∈V ρ

gl
m.

Theorem 3.2. Assume (3.16) and that ηgl > 0. Let Ggl(Γ̂) denote the estimated

graph obtained through the graphical lasso as base learner in Algorithm 1 with penalty

parameters ρgl1 , . . . , ρ
gl
d . Then, as soon as

∥∥Γ̂− Γ
∥∥
∞ < Cgl :=

2

3
min

{
min

i,m∈V,i ̸=m
Σ

(m)
ii ,

ηglρglmin

8
,

1

χ0s
− ρglmax,

θglmin

4κΩ
− ρglmax

}
,

for χ0 := 6κΣκΩ(1 ∨ (9κ2ΣκΩ/η
gl)), we have Ggl(Γ̂) = G.

Assuming that k ≥ nζ for some ζ > 0, log d = o(k/(log k)8) and the quantities

mini ̸=mΣ
(m)
ii , κΣ, κΩ, η

gl are bounded away form zero and infinity, we have

P
(
Ggl(Γ̂) = G

)
→ 1, n→ ∞,

provided that ρglmax < (2χ0s)
−1 ∧ (θglmin/8κΩ) and (k/n)ξ(log(n/k))2 +

√
(log d)/k =

o(ρglmin).

Similarly to the statements in Theorem 3.1, we opted for simplicity over generality.

It is possible to obtain sharper statements for the second part by combining the

statement in the first part with concentration results on the empirical variogram.

Moreover, it suffices if a majority of the incoherence parameters ηgl1 , . . . , η
gl
d are non-

negative.

One important difference between the assumptions for consistent graph estimation

via neighborhood selection and graphical lasso lies in the definition of corresponding
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incoherence parameters. While there are no general results stating that one parameter

is always smaller than the other, simulations indicate that in the models we considered,

the neighborhood selection incoherence parameter is more likely to be positive; see

Section 3.5 for additional details. This is in line with the discussion in Ravikumar et al.

(2011, Sections 3.1.1, 3.1.2) who show that in two examples, conditions required for

consistent graph recovery via neighborhood selection are weaker than those required

by the graphical lasso.

Similarly to θnsmin, the quantity θglmin corresponds to a minimal signal strength

condition. Both quantities are of the same order provided that all diagonal entries

of Θ(m) are bounded away from zero and infinity for all m. In Theorem 3.2, we find

that assuming all other parameters fixed, θglmin ≫ rk,n and s−1 ≫ rk,n are required

for consistent graph recovery with graphical lasso as the base learner. This matches

the requirements when neighborhood selection is the base learner; see the discussion

following Theorem 3.1.

3.4.2 Concentration of the empirical variogram

In this section we present concentration results on the empirical extremal variogram

Γ̂(m) in (3.18) when the data X is in the domain of attraction of an arbitrary multi-

variate Pareto distribution Y with extremal variogram matrices Γ(m), m ∈ V . The

bound holds simultaneously for all the estimators Γ̂(m). In the Hüsler–Reiss case,

where all the population matrices Γ(m) are equal, the same bound holds trivially for

the combined empirical variogram Γ̂.

We first introduce some additional notation and technical assumptions. Define the

R-function by

R(x) = lim
q↓0

q−1P(F (X) > 1− qx), x ∈ [0,∞)d. (3.19)

This function can be recovered from the stable tail dependence function L appearing

in (3.3) through simple manipulations with the inclusion-exclusion formula; for d = 2,

their relationship simplifies to R(x, y) = x + y − L(x, y). Additionally, we have

R(x) = P(Y > 1/x)/P(Y1 > 1). The R-function is a popular object in describing

multivariate extreme value distributions and turns out to be convenient for our

theoretical analysis. In what follows, for J ⊂ V , let RJ denote the R-function

corresponding to YJ . When J is a pair or a triple, we write Rij and Rijm for R{i,j}

and R{i,j,m}.

Assumption 3.1 is already sufficient to derive concentration bounds for the empirical

extremal variogram, but sharper results are possible if the function R has pairwise
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densities satisfying a certain bound.

Assumption 3.2 (Bounds on densities). For each i, j ∈ V, i ̸= j the functions Rij

have mixed partial derivatives rij satisfying

rij(x, y) :=
∂2

∂x∂y
Rij(x, y) ≤

K(β)

xβy1−β
, (x, y) ∈ (0,∞)2,

for constants K(β) and every β ∈ [−ε, 1 + ε], for some some ε > 0.

Remark. Lemma 3.3 shows that Assumption 3.2 is satisfied by any non-degenerate

Hüsler–Reiss distribution; the value ε therein can be chosen arbitrarily large and the

constant K(β) will additionally depend on Γ. In addition, it is trivial to check that

the assumption holds if the functions rij satisfy

rij(x, 1− x) ≤ Kr(x(1− x))ε, x ∈ (0, 1),

for some positive constants Kr and ε.

We are now ready to state the main result in this section.

Theorem 3.3. Let Assumption 3.1 hold and ζ ∈ (0, 1] be arbitrary. There exist

positive constants C, c and M only depending on K, ξ and ζ such that for any k ≥ nζ

and λ ≤
√
k/(log n)4,

P
(
max
m∈V

∥∥Γ̂(m)−Γ(m)
∥∥
∞ > C

{(k
n

)ξ
(log(n/k))2+

(log(n/k))2(1 + λ)√
k

})
≤Md3e−cλ

2

.

If in addition Assumption 3.2 holds, there exists a positive constant C̄ only depending

on K, ξ, ζ, ε and K(β) such that for any k and λ as above,

P
(
max
m∈V

∥∥Γ̂(m) − Γ(m)
∥∥
∞ > C̄

{(k
n

)ξ
(log(n/k))2 +

1 + λ√
k

})
≤Md3e−cλ

2

.

This theorem is the main technical result of this chapter, and the proof turns

out to be surprisingly involved, especially the part establishing the sharper bound

under Assumption 3.2. A major difficulty stems from the use of empirical distribution

functions to normalize the margins. As mentioned previously, this result is of general

interest in structure learning for extremes. It provides a crucial ingredient in the

analysis of tree learning in Engelke and Volgushev (2020) and should also prove

useful in other settings such as estimation of extreme value distributions under total

positivity constraints as in Röttger et al. (2021).

The term (k/n)ξ(log(n/k))2 appearing in the upper bound above results from an

upper bound on the bias in estimating Γ(m) due to the fact that we only observe data
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from the domain of attraction of Y , rather than from the distribution of Y directly.

The second term involving λ in both cases arises from the stochastic error. We note

that k corresponds to the effective number of observations used for estimation of Γ(m),

and in that sense the term λ/
√
k appearing in the second tail bound corresponds to

the typical
√
k convergence rates in extreme value theory.

We close this section by discussing the relation between Assumption 3.1 and

standard second order conditions on bounded sets.

Assumption 3.3 (Second order). The marginal distribution functions F1, . . . , Fd are

continuous and there exist constants ξ′ > 0 and K ′ < ∞ such that for all J ⊂ V ,

|J | ∈ {2, 3}, and q ∈ (0, 1],

sup
x∈[0,1]|J|

∣∣∣q−1P(FJ(XJ) > 1− qx)−RJ(x)
∣∣∣ ≤ K ′qξ

′
. (3.20)

As we show below, this condition together with an assumption on the tails of Rij

implies the stronger Assumption 3.1 and vice versa.

Assumption 3.4 (Tail). There exist constants ξT > 0 and KT <∞ such that for all

i ̸= j ∈ V and q ∈ (0, 1],

1−Rij(q
−1, 1) ≤ KT q

ξT . (3.21)

The relation between the above conditions is summarized in the following Proposi-

tion.

Proposition 3.1. If Assumption 3.1 holds then Assumption 3.3 holds with K ′ = 2K,

ξ′ = ξ and Assumption 3.4 holds with KT = K, ξT = ξ. Conversely, if Assumption 3.3

holds with K ′, ξ′ and Assumption 3.4 holds with KT , ξT , then Assumption 3.1 holds

with K = (K ′ + 2KT ), ξ = ξ′ξT/(1 + ξ′ + ξT ).

Note that Hüsler–Reiss distributions satisfy Assumption 3.4 for any ξ′ > 0 pro-

vided that all entries of the matrix Γ are bounded away from zero and infinity (see

Lemma 3.3). Therefore, for Hüsler–Reiss distributions Assumption 3.1 holds as soon

as Assumption 3.3 is satisfied for a strictly larger exponent ξ′. Theorems 3.1 and 3.2

thus hold under the more standard Assumption 3.3 only.

3.5 Simulations

3.5.1 Simulation setup

We conduct several simulation studies to compare the performance and properties of

different structure learning methods for extremal graphs. Two classes of Hüsler–Reiss
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distributions Y are chosen as the true extremal graphical model. They are described

below by first sampling a random graph structure G = (V,E) and then generating a

random parameter matrix Γ that factorizes on that graph. Using the exact method of

Dombry et al. (2016), we then simulate n samples of a max-stable random vector X

associated to Y (cf., Rootzén et al., 2018b), whose copula is

P(F (X) ≤ x) = exp{−L(− logx)}, x ∈ [0,∞)d,

where L is the stable tail dependence function of Y in (3.3). It is shown in Section 3.12.7

that this distribution satisfies Assumption 3.3 with ξ′ = 1. Hence by Proposition 3.1

and Lemma 3.3, it satisfies Assumption 3.1 with any ξ < 1. In particular, it is in the

domain of attraction of Y .

As the first random graph G = (V,E) we consider the Barabasi–Albert model

denoted by BA(d, q), which is a preferential attachment model with d nodes and a

degree parameter q ∈ N (Albert and Barabási, 2002). Figure 3.3 shows two examples

in dimension d = 100, one for degree q = 1, which is a tree, and one for degree

q = 2. In order to randomly generate a valid Hüsler–Reiss parameter matrix Γ on

G, we use the scheme in Ying et al. (2021) to sample a weighted graph Laplacian

matrix. The latter can be used as a Hüsler–Reiss precision matrix Θ, which then

corresponds uniquely to a variogram matrix; see Section 3.2.3. More precisely, we

sample for every undirected edge (i, j) ∈ E of G an independent uniform random

variable Uij ∼ Unif[2, 5], and define the matrix W ∈ Rd×d by

Wij = Wji :=

Uij if (i, j) ∈ E,

0 otherwise.

Let D be the diagonal degree matrix with entry Dii given by the ith row sum of W ,

i ∈ V . The matrix Θ = D −W is called a weighted Laplacian matrix over the graph

G and is a valid Hüsler–Reiss precision matrix (Röttger et al., 2021).

We note that this construction always results in a precision matrix satisfying

Θij ≤ 0, i, j ∈ V, i ̸= j. (3.22)

By Röttger et al. (2021, Lemma 4.5) this implies that the corresponding Hüsler–

Reiss distribution is EMTP2, a notion of positive dependence for multivariate Pareto

distributions. While encountered frequently in multivariate extreme value models

(see Röttger et al., 2021, Section 4), such positive dependence is not present in all

Hüsler–Reiss distributions.

As a second model for G and Γ, we therefore consider a setup where Θij > 0 for
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some i, j ∈ V . Note that in this case there is no canonical construction similar to the

Laplacian matrix above. Instead, we consider a graph with nC fully connected cliques

C1, . . . , CnC
, each consisting of nN nodes. We assume that the only intersections of

these cliques are between Cj and Cj+1, j = 1, . . . , nC − 1, and that each intersection

consists of a single node. This results in a block graph G and a block structure

of the precision matrix Θ (Hentschel, 2021); see the right-hand side of Figure 3.3

for a block graph with nC = 10 and nN = 4. On this extremal graph structure, it

suffices to specify ΓCj ,Cj
on each clique Cj, and the remaining entries are implied

by the conditional independence structure (Engelke and Hitz, 2020, Proposition

4). Following Hentschel (2021), we can construct a valid ΓCj ,Cj
matrix by taking

any (nN × nN)-dimensional covariance matrix S and projecting it by PSP , where

P = Id − 11⊤/d; see Section 3.2.3. For each clique we generate independently a

correlation matrix S following the method in Joe (2006), whose off-diagonal entries

have marginal Beta(α − 1 + nN/2, α − 1 + nN/2) distributions rescaled to (−1, 1),

where α > 0 is a parameter. We denote this block model for Γ by BM(nC , nN , α).

It has dimension d = nN + (nC − 1)(nN − 1) and is parametrized by the number of

cliques nC , the number of nodes nN per clique, and the parameter α governing the

dependence inside the cliques. Figure 3.7 shows the proportion of positive off-diagonal

entries of the Hüsler–Reiss precision matrix Θ corresponding to the block graph model

BM(6, 4, α) for different α values. It can be seen that for increasing α, less positive

values appear and the model becomes closer to EMTP2.
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Figure 3.3: Realization of the Barabasi–Albert model of degree q = 1 (left) and q = 2 (center) in

dimension d = 100, and of the block graph model in dimension d = 31.

3.5.2 Competing methods and evaluation

We apply several methods for structure estimation to the simulated data. All methods

are based on the empirical extremal variogram Γ̂ defined in (3.15). For a given sample

size n, this estimator uses only the k largest exceedances in each variable. Throughout
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the simulation study, we choose k = ⌊n0.7⌋, which satisfies the assumptions for our

theory. We refer to Engelke and Volgushev (2020, Section 5) for a detailed study of

the choice of k in the framework of structure learning for extremal trees, which applies

in the same manner here. In practice, k can be chosen based on stability plots of the

estimated entries of Γ̂, similar to the Hill plot (e.g., Drees et al., 2000).

The first estimator of the extremal graph structure G is the extremal minimum

spanning tree Tmst introduced in Engelke and Volgushev (2020). For a given estimate

Γ̂ of the extremal variogram, it is defined as

Tmst = arg min
T=(V,E)

∑
(i,j)∈E

Γ̂ij, (3.23)

where the minimum is taken over all tree structures T . In Engelke and Volgushev

(2020) it is shown to consistently recover an underlying tree even in high dimensions.

By construction, this always results in a tree and hence cannot be consistent for graphs

that are not trees.

A second method is the estimator introduced in Röttger et al. (2021) who obtain

an EMTP2 estimator of Θ as the solution of the convex problem

−log det∗Θ+
1

2
tr Γ̂Θ (3.24)

over all Hüsler–Reiss precision matrices satisfying the EMTP2 constraint (3.22). This

method sometimes introduces sparsity, but it is important to note that it is not

designed for structure estimation. While Röttger et al. (2021) show consistency of this

estimator for the entries of Γ in a fixed–dimensional setting, there are no guarantees

for consistent graph recovery of G, even if the true model is EMTP2. The method

should thus not be considered as a direct competitor but is included for comparison.

In Section 3.3.1 we introduced our EGlearn algorithm that uses majority voting for

structure estimation of general extremal graphical models. It can either be combined

with neighborhood selection or graphical lasso as the base learning method. Both

methods depend on collections of tuning parameters, which are denoted as ρnsm,ℓ and

ρglm, respectively, m ∈ V , ℓ ∈ [d − 1]. We first set them all to the same value ρ to

obtain a path of estimated graphs indexed by ρ, ranging from dense to sparse graphs

for increasing values of ρ; see Figure 3.4 for typical paths for the two base learners. As

a benchmark, we consider an oracle version of our estimator by selecting ρ to minimize

the evaluation metric (3.25) below.

In practice, we need to select the amount of sparsity of the graph structure in a

data driven way. We discuss automatic tuning of EGlearn with neighborhood selection

as base learner, since it turns out to be superior to the graphical lasso alternative in
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all the settings that we consider. At the mth step of the algorithm, d different lasso

regressions are produced by solving (3.13) with Â := Σ̂
(m)
\m,\m. For each m and ℓ, we

define a surrogate for the deviance as

devm,ℓ(θ) := k log
(
Âℓℓ − 2Âℓ,\ℓθ + θ⊤Â\ℓ,\ℓθ

)
− k log k.

Among a path of solutions θ̂ of (3.13) indexed by the choice of ρnsm,ℓ, the AIC, BIC

and MBIC tuning strategies select the value θ̂ minimizing

devm,ℓ(θ̂) + 2∥θ̂∥0, devm,ℓ(θ̂) + (log k)∥θ̂∥0, devm,ℓ(θ̂) + (log k)(log log(d− 1))∥θ̂∥0,

respectively, where ∥θ̂∥0 is the number of non-zero elements in θ̂. They are motivated by

the traditional Akaike information criterion (Akaike, 1974) and Bayesian information

criterion (Schwarz, 1978), and on an extension of the latter to high-dimensional models

developed in Wang et al. (2009).

In order to compare an estimated graph Ĝ = (V, Ê) with the true underlying graph

G = (V,E), we use as evaluation metric the F -score. It is defined as

F =
|E ∩ Ê|

|E ∩ Ê|+ 1
2
(|Ec ∩ Ê|+ |E ∩ Êc|)

, (3.25)

where for a set of edges E, the set Ec denotes all possible undirected edges on V × V

except for those in E. The F -score consists precisely of the harmonic mean between

the precision and the recall.
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3.5.3 Results
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Figure 3.4: Paths for EGlearn with grahpical lasso (left) and neighborhood selection (right) as a

function of the common tuning parameter ρ, fitted to data from the BA(20, 2) model with k = 5d.

Circles indicate that the estimated graph Ĝ is connected, and crosses correspond to unconnected

graphs. Dashed lines show the density of the graph, that is, the proportion of existing edges in Ĝ

out of all d(d− 1)/2 possible edges.

The first set of simulations assesses the performance in terms of the F -score of the

different methods described in the previous section. We simulate n samples from the

Hüsler–Reiss distribution generated according to the Barabasi–Albert model BA(d, q)

of degrees q ∈ {1, 2} and in dimensions d = {20, 50, 100}. For a given dimension

d, we simulate three different sample sizes n such that the number of exceedances

satisfy k/d ∈ {0.5, 1, 2.5} and k/d ∈ {0.5, 1, 5} for the models with q = 1 and q = 2,

respectively. The case of k/d = 0.5 is a high-dimensional setting since the number of

effective samples is smaller than the dimension. The different methods are then applied

based on the empirical variogram Γ̂ as described above using k = ⌊n0.7⌋ exceedances

in each variable. Figure 3.4 shows typical paths of F -scores and densities of estimated

graphs for EGlearn for the two base learners.

The results for dimensions 20 and 100 are shown in Figures 3.5 and 3.6 as boxplots

of the F -scores for 100 repetitions of each experiment. Similar results are obtained in

dimension 50 in Section 3.8.1. The minimum spanning tree in (3.23) outperforms the

other methods when the underlying model is indeed a tree (q = 1). This is expected

since the approach takes advantage of the special structure of a tree. For the more

general Barabasi–Albert graph with degree q = 2 the minimum spanning tree is no

longer consistent and even with larger sample sizes the F -scores stay bounded below



CHAPTER 3. LEARNING EXTREMAL GRAPHICAL MODELS IN HIGH DIMENSIONS 120

a certain level. The EMTP2 estimator does not recover the graph structure well. As

discussed in the previous section, this is not surprising, since there are no guarantees

concerning structure estimation in this method, even if the true model is EMTP2.

Turning to the methods that are designed to estimate extremal graphical structures

for general graphs G, we first observe that EGlearn with grahpical lasso as the base

learner does not perform well on any of the simulations, even with the oracle value

for the penalty paramter ρ. This is surprising since the graphical lasso for Gaussian

distributions is a well established method; we discuss this phenomenon in more detail

below. On the other hand, EGlearn with neighborhood selection performs very well

and seems to consistently recover the graph in all of the setups for large enough sample

sizes.

Since the EGlearn with graphical lasso is generally not consistent even with oracle

tuning parameter, we only consider data driven selection of the tuning parameters

in the case of neighborhood selection. Figures 3.5 and 3.6 show the performance of

this method for model selection based on the AIC, BIC and MBIC as described in

Section 3.5.2. We observe that AIC does not work well for selection of the penalization

parameter. This is to be expected since the AIC is too conservative to result in

consistent model selection even in classical settings (Arlot and Celisse, 2010). On the

other hand, BIC and MBIC behave similarly and both produce structure estimates

that are fairly close to the oracle estimator.

We next run simulations with Hüsler–Reiss distributions generated according to

the block model BM(6, 4, α), which results in d = 19 nodes in the graph. For the

dependence parameter we choose a sequence of values α ∈ {0.1, 1, 2, 10, 20}. As before
we use k = ⌊n0.7⌋ exceedances and we simulate two different sample sizes n such

that k/d ∈ {2, 10}. The results for 100 repititions are shown in Figure 3.7. The

top right panel shows boxplots of the F -scores for the oracle EGlearn with graphical

lasso and neighborhood selection as a functon of α. We observe that again, EGlearn

with graphical lasso base learner does not seem to be consistent since even with the

larger sample size the F -scores do not improve much. On the contrary, EGlearn with

neighborhood selection performs well especially for larger samples sizes, suggesting

consistency of the method. We further observe that in general, smaller values of α

correspond to more difficult estimation problems. Note that this corresponds to the

case of higher proportions of positive entries Θij in the Hüsler–Reiss precision matrix

(top left panel of Figure 3.7).

To understand this behaviour and the related phenomenon that the graphical lasso

as base learner does not seem to work well, we take a closer look at the assumptions

for consistent structure recovery by EGlearn in Theorems 3.1 and 3.2. For a given
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parameter matrix Γ, a crucial requirement for both neighborhood selection and

graphical lasso as base learner is the positivity of the incoherence parameters ηns and

ηgl, respectively. The bottom panels of Figure 3.7 show boxplots of these parameters

for the generated block models. All incoherence parameters ηns for neighborhood

selection are positive and thus, Theorem 3.1 guarantees consistent graph recovery. We

also note that as α increases, so does ηns, and the graph recovery results improve. This

is in line with our theory; the expression of Cns in Theorem 3.1 suggests that a higher

ηns increases the probability of graph recovery. On the other hand, all incoherence

parameters ηgl are negative and Theorem 3.2 is not applicable. More generally, for all

the simulation settings we have considered, the neighborhood selection incoherence

parameter ηns is much more likely to be positive than its graphical lasso equivalent

ηgl. It thus appears that the assumption of Theorem 3.1 is significantly weaker than

that of Theorem 3.2. This is also consistent with results in the literature of Gaussian

structure learning (Ravikumar et al., 2011, Sections 3.1.1, 3.1.2).

Since Hüsler–Reiss graphical models are not defined on disconnected graphs, subse-

quent inference for Γ on Ĝ requires that the estimated graph is connected. Theorem 3.1

and 3.2 ensure that the paths obtained by EGlearn include the true, connected graph

with high probability. In finite samples with data-driven penalty parameter, it can

however happen that the selected graph is disconnected. Focusing again on the case

of neihborhood selection, we observe that in all our simulations, the estimated paths

are monotone in the sense that the graphs are nested in one another; no edge can

enter the model when increasing the penalty parameter (see, e.g., the right panel of

Figure 3.4). If the selected graph is disconnected, we therefore propose to use the

connected graph with the largest penalty parameter ρ. Table 3.1 in Section 3.8.2

shows that the performance loss in terms of F -score due to this strategy is negligible,

except for very sparse models such as trees, where sometimes disconnected graphs Ĝ

may be selected that are very similar to G. See the discussion and simulations therein

for more details.

Note that the same strategy would not be sensible for EGlearn with the graphical

lasso as base learner, since the path of the graph density is not monotone; see left

panel of Figure 3.4.
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Figure 3.5: Results of 100 repetitions in dimension d = 20 and degree q = 1 (left) and q = 2 (right).
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Figure 3.6: Results of 100 repetitions in dimension d = 100 and degree q = 1 (left) and q = 2 (right).
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Figure 3.7: Results for the BM(6, 4, α) model for different α. Top left: proportion of positive

off-diagonal entries of the Hüsler–Reiss precision matrix Θ; top right: F -score of EGlearn with

graphical lasso (blue) and neighborhood selection (yellow) with k = 2d and k = 10d for empty and

filled boxes, respectively; bottom left: parameter ηns; bottom right: parameter ηgl.

3.6 Application

We use daily discharge data collected at d = 31 stations in the upper Danube basin

(Asadi et al., 2015) to illustrate the proposed algorithm. The original data set spans

over 50 years, but after removing seasonality, declustering and “aligning” the d time

series, Asadi et al. (2015) are left with n = 428 observations. We use their preprocessed

version of the data set. Considering the discharges as observations from a d-dimensional

random vector X, we are interested in the dependence structure between floodings

along the basin, represented by the tail dependence of X.
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A certain amount of information can be deduced from the physical properties of the

river network itself: the flow connections are known, and are graphically represented

in the left panel of Figure 3.8. It is reasonable to expect that extremal dependence

is strong along those connections. However, due to other geographical features (e.g.,

small Euclidean distance between some stations that are otherwise not directly flow-

connected), the extremal dependence may be too complex to be represented by this

simple tree structure.

We first fix the number k of tail observations to be used in each variable as k = 42,

which corresponds to only using data where one component exceeds it’s marginal 90th

percentile. This choice coincides with that of Engelke and Hitz (2020), Section 6, who

also fit a Hüsler–Reiss graphical model to this data, although their methods only allow

for the limited structure of block graphs. Using the same threshold exceedances will

allow us to compare our results with the aforementioned paper. Using EGlearn with

neighborhood selection and a grid of 100 equidistant values of ρ between 0 and 0.5, we

then compute a path of estimated extremal graphs for this data. We find that as soon

as ρ exceeds 0.1, the estimated graph is disconnected. The center panel of Figure 3.8

shows the sparsest estimated graph that is connected, corresponding to ρ = 0.1. We

also compute the AIC, BIC and MBIC graphs, as defined in Section 3.5. It turns out

that those three graphs are disconnected, although the AIC graph is merely two edges

away from being connected. See Figure 3.10.

The structure learning methods presented in this chapter output an estimated

graph Ĝ = (V, Ê). They do not automatically provide an estimator of the Hüsler–Reiss

parameter matrix Γ on this graph structure. A natural estimator Γ̂0 that has the

sparsity pattern of Ĝ and agrees with the input estimator Γ̂ (here, the empirical

variogram) on the edges of Ĝ is the solution to the matrix completion problem

Γ̂0
ij = Γ̂ij, (i, j) ∈ Ê,

Θ̂0
ij = 0, (i, j) /∈ Ê,

where Θ̂0 is the Hüsler–Reiss precision matrix corresponding to Γ̂0. Hentschel (2021)

show that there is a unique solution to this completion problem, hence yielding a

unique Hüsler–Reiss model fit along each estimate graph. Using this procedure, we are

able to obtain estimated models for each connected graph in the estimated path and

measure the model fit via, for instance, the Hüsler–Reiss log-likelihood. For means of

comparison, we calculate the AIC of each such model, as defined in Engelke and Hitz

(2020), and plot them in the right panel of Figure 3.8 as a function of the number of

edges in the estimated graph. We obtain a path of increasingly complex estimated
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models, seven of which outperform the block graph model obtained by Engelke and

Hitz (2020) via forward selection (blue dashed line). The latter itself outperforms the

hybrid spatial model of Asadi et al. (2015) (orange dashed line).
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Figure 3.8: Left: graphical representation of the river flow across the 31 stations. Center: the most

sparse connected graph in the estimation path (ρ = 0.1). Right: AIC of the estimated Hüsler–Reiss

models as a function of the number of edges in the estimated graph. AIC of the best models estimated

in Engelke and Hitz (2020) and Asadi et al. (2015) are in blue and orange, respectively.

3.7 Extensions and future work

In the present chapter, we have introduced a general methodology for estimating

Hüsler–Reiss graphical models through EGlearn and provided a thorough theoretical

analysis of the resulting procedure. This is the first principled approach for estimating

extremal graphical models on arbitrary connected graphs, and there are many questions

warranting further investigation.

A first direction is a systematic exploration of alternative base learners in EGlearn.

We have focused on the two most popular and classical approaches, but many more

possible choices exist; see Drton and Maathuis (2017, Chapter 3) and the references

cited therein for a partial overview of the recent literature with a focus on graphical

modeling.

Similarly, in this chapter we have used the empirical variogram, but different

estimators of the variogram matrix Γ could be considered. For instance, one could

consider method of moments or M-estimators for extremes (Einmahl et al., 2008, 2012).

This could be especially interesting in the high-dimensional regime, where it might

be possible to obtain estimators of the variogram matrix with better concentration

properties than the empirical variogram.

Lastly, we discuss alternatives to the EGlearn algorithm. In view of the charateri-

zation of extremal conditional independence for Hüsler–Reiss distributions in (3.10),

a promising direction for future research is to consider methods that simultaneously
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penalize the entries and row sums of Θ(m). More precisely, for an arbitrary m ∈ V ,

one may attempt to estimate Θ(m) by solving the doubly penalized graphical lasso

problem

argmin
Θ(m)∈Sd

Θ
(m)
mV =0

{
−log det∗Θ(m)+tr(Σ̂(m)Θ(m))+ρ

∑∑
i ̸=j

|Θ(m)
ij |+2ρ

∑
i

∣∣∣∣∑
j

Θ
(m)
ij

∣∣∣∣}, (3.26)
where Σ̂(m) is defined as φm(Γ̂) for some estimate Γ̂ of the extremal variogram, where

φm is as in (3.8). Here, det∗ denotes the pseudo-determinant of a matrix (the product

of its non-zero eigenvalues) and Sd is the space of symmetric positive semi-definite

matrices in Rd×d. The second penalty term is used to impose sparsity of the row and

column sums of Θ(m), in addition to sparsity in the off-diagonal entries themselves.

The motivation for such an approach is that zero row sums of Θ(m) contain information

on the absence of edges containing the node m; see (3.10).

Alternatively, in view of the charaterization in (3.12), one may consider a sparse

estimate of the positive semi-definite matrix Θ defined in (3.11) by the modified

graphical lasso problem

argmin
Θ∈Sd

1

{
− log det∗Θ+ tr(Σ̂Θ) + ρ

∑∑
i ̸=j

|Θij|
}
, (3.27)

where Sd1 is the cone of symmetric, positive semi-definite matrices with rank d − 1

and row sums equal to zero. The estimator Σ̂ is defined as a transformation of

the extremal variogram estimator through Σ̂ = P (−Γ̂/2)P , where P = Id − 11⊤/d

as in Section 3.2.3. While this is a more symmetric approach, the difficulty is the

semi-definiteness of Θ.

For any m ∈ V , the matrix Θ(m) uniquely defines the variogram Γ, and hence

characterizes the Hüsler–Reiss model. The solution to (3.26), an estimate of Θ(m), can

therefore be transformed to a variogram estimate Γ̂
(m)
ρ . Similarly, the solution to (3.27)

is an estimate of Θ and can be uniquely transformed into a variogram estimate Γ̂ρ.

Interestingly, if the input Γ̂ of these optimization problems is the same (for example,

the empirical variogram), then regardless of the choice of m, (3.26) and (3.27) result

in the same estimated model.

Proposition 3.2. Let Γ̂ be an arbitrary estimator of the extremal variogram matrix

and suppose that (3.26) and (3.27) are solved with inputs Σ̂(m) = φm(Γ̂) and Σ̂ =

P (−Γ̂/2)P , respectively, and with constant penalty parameter ρ > 0. Then the
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corresponding estimated models are all the same, i.e.,

Γ̂(1)
ρ = · · · = Γ̂(d)

ρ = Γ̂ρ.

While the above approaches are attractive, preliminary simulations indicate that it

does in general not lead to consistent recovery of the sparsity structure of the matrices

Θ(m) and Θ. This is in line with theoretical results obtained by Ying et al. (2020a),

who investigate Laplacian constrained degenerate Gaussian distributions. Replacing

the vanilla L1 penalties by adaptively weighted (Ying et al., 2021) or non-convex

(Ying et al., 2020b) versions might provide a way out.

3.8 Additional numerical results

3.8.1 Simulation results for the BA(50, q) model

The results of our experiments on the Barabasi–Albert model of dimension 50 are

presented in Figure 3.9. The conclusions are similar to the 100-dimensional case:

with neighborhood selection as base learner, the algorithm has a seemingly consistent

behavior as k → ∞, as opposed to the graphical lasso case.
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Figure 3.9: Results of 100 repetitions in dimension d = 50 and degree q = 1 (left) and q = 2 (right).
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3.8.2 Connectedness

The graph estimated by the EGlearn algorithm with neighborhood selection as its

base learner is not guaranteed to be connected in general. In Section 3.5, we suggested

that when the selected graph is not connected, one can compute a path of solutions

using ρnsm,ℓ ≡ ρ, for a grid of values ρ, and select the sparsest connected graph in the

path.

Note that as illustrated in Section 3.6, each estimated graph in a path can be

“completed” into a unique Hüsler–Reiss estimated model. A strategy to ensure connect-

edness, not investigated here, is to calculate the AIC for those models and maximize

that measure, say, over all the connected graphs in the path.

To quantify the effect of the first strategy above, we study three specific scenarios:

the models BA(50, 1), BA(50, 2) and BM(10, 4, 2) (with dimension d = 31), which

have been used above. For each model, we simulate 100 samples of size n such that

k := ⌊n0.7⌋ is equal to d/2, d and to 5d; we omit k = d/2 for the block model, since the

small sample size k = 15 creates some degeneracies. For each model and sample, a path

of estimated graphs is obtained according to EGlearn with neighborhood selection

as base learner, and with 100 equidistant values of ρ between 0 and 1. We then

calculate the ratio of the maximum F -score among connected graphs in the path to

the unconstrained maximum F -score. The average ratio for each setup is presented in

Table 3.1, with standard deviation. In addition, we calculate the proportion of samples

where the oracle and the AIC, BIC and MBIC graphs (as defined in Section 3.5) are

connected. These proportions are found in the last four columns of Table 3.1.

The BIC and MBIC graphs are frequently disconnected if the sample size is small,

whereas the AIC, being more conservative, tends to avoid that problem. However,

the performance of the algorithm is generally stable over a certain range of tuning

parameters, and the loss incurred by only optimizing over the connected graphs is

negligible. The largest loss of performance in terms of F -score is of the order of 12% in

the BA(50, 1) model. This graph is a tree, the most sparse connected graph structure,

which explains why it is well approximated by certain disconnected estimates. For the

other, denser models, the performance loss is less than 1%.
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F -score ratio oracle AIC BIC MBIC

k = d/2 0.873 (0.066) 0.02 0.56 0.02 0

BA(50, 1) k = d 0.894 (0.075) 0.09 0.87 0.41 0.13

k = 5d 0.997 (0.018) 0.91 1 0.99 0.99

k = d/2 0.992 (0.02) 0.72 0.86 0.04 0

BA(50, 2) k = d 0.996 (0.01) 0.78 0.99 0.56 0.01

k = 5d 1 (0) 1 1 1 1

BM(10, 4, 2)
k = d

k = 5d

0.996 (0.016)

0.999 (0.003)

0.87

0.98

0.91

1

0.66

0.98

0.42

0.97

Table 3.1: Average ratio of the best F -score among connected graphs in the path obtained by EGlearn

with neighborhood selection, to the best F -score in the whole path, based on 100 simulations. Standard

deviations in parentheses. The last four columns contain the proportions of samples where the oracle,

AIC, BIC and MBIC graphs are connected.

3.8.3 AIC and BIC estimated graphs from the Danube data

Figure 3.10 contains the graphs obtained by running EGlearn on the Danube data set,

with neighborhood selection as the base learner. The empirical variogram is calculated

with k = 42, and the AIC, BIC and MBIC are defined as in Section 3.5.
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Figure 3.10: The AIC (left), BIC (center) and MBIC (right) graphs based on the Danube data.

3.9 Proofs of extremal graph recovery results

3.9.1 Proof of Theorem 3.1

When running the neighborhood selection algorithm on Σ
(m)
\m,\m, m ∈ V , recall that

ρnsm,1, . . . , ρ
ns
m,d−1 are used as penalty parameters. Let

λm,ℓ := λmin(Σ
(m)
Sm,ℓ,Sm,ℓ

),

κm,ℓ :=
∣∣∣∣∣∣∣∣∣Σ(m)

Sc
m,ℓ,Sm,ℓ

∣∣∣∣∣∣∣∣∣
∞
,
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ϑm,ℓ :=
∣∣∣∣∣∣∣∣∣(Σ(m)

Sm,ℓ,Sm,ℓ
)−1
∣∣∣∣∣∣∣∣∣

∞
,

sm,ℓ := |Sm,ℓ|,

Cns
m,ℓ :=

2

3
min

{
λm,ℓ
2sm,ℓ

,
ηnsm,ℓ

4ϑm,ℓ(1 + κm,ℓϑm,ℓ)sm,ℓ
,

mini∈Sm,ℓ

|Biℓ|
Bℓℓ

− ϑm,ℓρ
ns
m,ℓ

2ϑm,ℓ(1 + κm,ℓϑm,ℓ)
,

ρnsm,ℓη
ns
m,ℓ

8(1 + κm,ℓϑm,ℓ)2

}
.

By Proposition 3.3, we have

{(i, j) ∈ (V \ {m})2 : Z̃(m) = 1} = {(i, j) ∈ (V \ {m})2 ∩ E}

provided that

∥Σ̂(m) − Σ(m)∥∞ <
3

2
min
ℓ̸=m

Cns
m,ℓ.

From the definition of Σm, Σ̂(m) through Γ, Γ̂, it follows that

max
m∈V

∥Σ̂(m) − Σ(m)∥∞ ≤ 3

2
∥Γ̂− Γ∥∞.

The EGlearn algorithm correctly learns the presence (resp. absence) of an edge (i, j)

if a 1 (resp. a 0) rightfully appears in position (i, j) of Z̃(m) for at least ⌊d/2⌋ values

of m /∈ {i, j}. This is clearly the case for each pair (i, j) if at least ⌊d/2⌋ + 2 of

the neighborhood selections perfectly succeed, which is guaranteed if ∥Γ̂ − Γ∥∞ <

minℓ̸=mC
ns
m,ℓ for at least ⌊d/2⌋+ 2 values of m. Noting that the assumed bound Cns

lower bounds each Cns
m,ℓ, the first statement of the theorem is proved.

For a proof of the second part, let

λ :=
√

3
c
log d+ σ

with c as in Theorem 3.3, and σ → ∞ but σ = o(k/(log k)8). Then, by assumption on

d and k, we have eventually λ ≤
√
k/(log n)4, so that Theorem 3.3 applies. It states

that with probability at least 1−M exp{3 log d− cλ2} = 1− o(1),

∥Γ̂− Γ∥∞ ≲
(k
n

)ξ
(log(n/k))2 +

√
log d+ σ√

k
.

By assumption, (k
n

)ξ
(log(n/k))2 +

√
log d√
k

= o(Cns),

so if σ is chosen to diverge slowly enough, we have P(∥Γ̂− Γ∥∞ < Cns) → 1. □
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3.9.2 Proof of Theorem 3.2

When running the graphical lasso algorithm on Σ
(m)
\m,\m, m ∈ V , recall that ρglm is used

as penalty parameter. Let

κΣ,m := |||Σ(m)|||∞, κΩ,m := |||(Ω(m)
Sm,Sm

)−1|||∞, χm := 6κΣ,mκΩ,m

(
1 ∨

9κ2Σ,mκΩ,m

ηglm

)
,

sm := max
ℓ∈[d−1]

sm,ℓ,

Cgl
m :=

2

3
min

{
min
i∈[d−1]

Σ
(m)
ii ,

ηglmρ
gl
m

8
,

1

χmsm
− ρglm,

θglmin

4κΩ,m
− ρglm

}
.

By Proposition 3.4, we have

{(i, j) ∈ (V \ {m})2 : Z̃(m) = 1} = {(i, j) ∈ (V \ {m})2 ∩ E}

provided that

∥Σ̂(m) − Σ(m)∥∞ <
3

2
Cgl
m.

Similarly to the proof of Theorem 3.1, deduce that whenever ∥Γ̂ − Γ∥∞ < Cgl
m for

at least ⌊d/2⌋ + 2 values of m, EGlearn correctly recovers the extremal graph G.

Moreover, Cgl ≤ Cgl
m for each m ∈ V , which completes the proof of the first part.

The proof of the second statement is identical to that of the second statement in

Theorem 3.1. □

3.9.3 Consistency of neighborhood selection and graphical lasso

Let A be a p-dimensional covariance matrix, B := A−1, Â be an estimator and

ε := ∥Â − A∥∞. Recall the definition of the graph G(B) associated to B, i.e., the

graph with edge set {(i, j) : i ̸= j, Bij ̸= 0}.
We start by discussing the neighborhood selection algorithm. Define the neighbor-

hood of a node ℓ in the graph G(B) by ne(ℓ) := {i ∈ [p] \ ℓ : Biℓ ̸= 0}. Let

λℓ := λmin(Ane(ℓ),ne(ℓ)),

κℓ :=
∣∣∣∣∣∣Ane(ℓ)c,ne(ℓ)

∣∣∣∣∣∣
∞,

ϑℓ :=
∣∣∣∣∣∣(Ane(ℓ),ne(ℓ))

−1
∣∣∣∣∣∣

∞,

sℓ := |ne(ℓ)|,

ηℓ := 1−
∣∣∣∣∣∣Ane(ℓ)c,ne(ℓ)(Ane(ℓ),ne(ℓ))

−1
∣∣∣∣∣∣

∞.
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Proposition 3.3. Assume that minℓ∈[p] ηℓ > 0 and

ε < min
ℓ∈[p]

min

{
λℓ
2sℓ

,
ηℓ

4ϑℓ(1 + κℓϑℓ)sℓ
,
mini∈ne(ℓ)

|Biℓ|
Bℓℓ

− ϑℓρℓ

2ϑℓ(1 + κℓϑℓ)
,

ρℓηℓ
8(1 + κℓϑℓ)2

}
.

Then the graph GNS(Â) obtained through the neighborhood selection in Algorithm 2

with penalty parameters ρ1, . . . , ρp is equal to G(B).

We now discuss the graphical lasso. Define the maximal edge degree s := maxℓ∈[p] sℓ,

with sℓ as earlier, S to be the augmented edge set {(i, j) : Bij ̸= 0}, including the self

loops (i, i), and Sc to be its complement in V 2. Let Ω := A⊗ A,

κA := |||A|||∞, κΩ := |||(ΩSS)
−1|||∞, χ := 6κAκΩ

(
1 ∨ 9κ2AκΩ

α

)
,

α := 1− |||ΩScS(ΩSS)
−1|||∞.

Proposition 3.4. Assume that α > 0 and

ε < min

{
min
i∈[p]

Aii,
αρ

8
,
1

χs
− ρ,

1

4κΩ
min

i ̸=j,Bij ̸=0
|Bij| − ρ

}
.

Then the graph GGL(Â) obtained through the graphical lasso with penalty parameter ρ

is equal to G(B).

Remark. For both algorithms, sε→ 0 is sufficient for model selection consistency as

the sample size increases, if everything else is constant and the relevant incoherence

condition is satisfied.

3.9.4 Proof of Proposition 3.2

Denote by fm the bijective function that maps Θ to Θ(m). It is proved in Röttger

et al. (2021) that

−log det∗Θ+ tr(Σ̂Θ) = − log det fm(Θ) + tr(Σ̂(m)fm(Θ)) + d.

Moreover, for any i, j not equal to m, fm(Θ)ij = Θij. This implies, first, that∑∑
i ̸=j

|fm(Θ)ij| =
∑
i ̸=m

∑
j /∈{i,m}

|Θij|.

It also implies that

2
∑
i

∣∣∣∣∑
j

fm(Θ)ij

∣∣∣∣ = 2
∑
i ̸=m

∣∣∣∣∑
j ̸=m

Θij

∣∣∣∣ = 2
∑
i ̸=m

| −Θim| =
∑
i ̸=m

|Θim|+
∑
j ̸=m

|Θmj|,
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since Θ has row sums zero, that is Θim = −
∑

j ̸=mΘij. The two equations above

combine into∑∑
i ̸=j

|fm(Θ)ij|+ 2
∑
i

∣∣∣∣∑
j

fm(Θ)ij

∣∣∣∣ =∑
i ̸=m

( ∑
j /∈{i,m}

|Θij|+ |Θim|
)
+
∑
j ̸=m

|Θmj|

=
∑
i ̸=m

∑
j ̸=i

|Θij|+
∑
j ̸=m

|Θmj|

=
∑∑

i ̸=j

|Θij|.

Conclude that since the objective functions in (3.26) and (3.27) differ only by an

additive constant term, the solution Θ̂ of (3.27) also minimizes

− log det fm(Θ) + tr(Σ̂(m)fm(Θ)) + ρ
∑∑

i ̸=j

|fm(Θ)ij|+ 2ρ
∑
i

∣∣∣∣∑
j

fm(Θ)ij

∣∣∣∣.
This completes the proof. □

3.10 Consistency of neighborhood selection and graphical

lasso: proofs

3.10.1 Proof of Proposition 3.3

First note that if each of the lasso regressions therein succeeds in recovering the

corresponding neighborhood, then clearly Algorithm 2 recovers the right graph.

We hereby fix an arbitrary index ℓ ∈ [p]. Now, note that the assumed bound on ε

implies

sℓε ≤ λℓ/2, (3.28)

ϑℓsℓε ≤ 1/2, (3.29)

2ϑℓ(1 + κℓϑℓ)sℓε ≤ ηℓ/2, (3.30)

2ϑℓ(1 + κℓϑℓ)ε+ ϑℓρℓ < min
i∈ne(ℓ)

|Biℓ|
Bℓℓ

, (3.31)

2(1 + κℓϑℓ)
2ε <

ρℓηℓ
4
. (3.32)

For the remainder of the proof, ℓ will be kept fix and hence will be partially removed

from the notation. In particular, the subscripts of λℓ, κℓ, ϑℓ, sℓ, ηℓ, ρℓ will be omitted.
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Our goal is to show then that

θ̂ := argmin
θ∈Rp−1

{
− 2Âℓ,\ℓθ + θ⊤Â\ℓ,\ℓθ + ρ∥θ∥1

}
(3.33)

has the same support (i.e., the set of indices where it is nonzero) as B\ℓ,ℓ.

Partition [p] into the three subsets {ℓ}, ne(ℓ) and ne(ℓ)c \ {ℓ}. We shall index

elements of vectors and rows/columns of matrices by ℓ, 1 and 2, respectively, to denote

those subsets, e.g.,

Â11 := (Âij)i∈ne(ℓ),j∈ne(ℓ)

Â21 := (Âij)i∈ne(ℓ)c\{ℓ},j∈ne(ℓ)

Â1ℓ := (Âiℓ)i∈ne(ℓ)

Â2ℓ := (Âiℓ)i∈ne(ℓ)c\{ℓ};

similarly define the population versions A11, A21, A1ℓ and A2ℓ. We use the same

notation for partitioning the matrix B. We now show that (3.28) to (3.32) imply the

bounds ∣∣∣∣∣∣∣∣∣Â21(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
≤ 1− η/2 (3.34)∥∥∥(Â11)

−1Â1ℓ +
B1ℓ

Bℓℓ

∥∥∥
∞
+
ρ

2

∣∣∣∣∣∣∣∣∣(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
< min

i∈ne(ℓ)

|Biℓ|
Bℓℓ

(3.35)∥∥∥Â21(Â11)
−1Â1ℓ − Â2ℓ

∥∥∥
∞
<
ρη

4
. (3.36)

Subsequently, by adapting the arguments of Zhao and Yu (2006), we will show that

the invertibility of Â11, along with (3.34) to (3.36), imply the result.

Preliminaries to the proofs of (3.34) to (3.36): Let us start by obtaining a few

useful bounds and identities.

We first prove that under the assumptions made, the matrix Â11 is invertible.

Observe that

λmin(Â11) = min
b:∥b∥2=1

b⊤Â11b ≥ λ− sup
b:∥b∥2=1

b⊤(Â11−A11)b ≥ λ−s∥Â11−A11∥∞ = λ−sε ≥ λ/2,

by (3.28). In the second inequality, we have used the known result that the spectral

norm of any square matrix is upper bounded by its dimension times its maximum

norm. Most importantly, we have established that Â11 is invertible.

Now, by sub-multiplicativity of operator norms,∣∣∣∣∣∣∣∣∣(Â11)
−1 − (A11)

−1
∣∣∣∣∣∣∣∣∣

∞
=
∣∣∣∣∣∣∣∣∣(Â11)

−1(A11 − Â11)(A11)
−1
∣∣∣∣∣∣∣∣∣

∞
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≤
∣∣∣∣∣∣(A11)

−1
∣∣∣∣∣∣

∞

∣∣∣∣∣∣∣∣∣(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞

∣∣∣∣∣∣∣∣∣Â11 − A11

∣∣∣∣∣∣∣∣∣
∞

≤ ϑ
(
ϑ+

∣∣∣∣∣∣∣∣∣(Â11)
−1 − (A11)

−1
∣∣∣∣∣∣∣∣∣

∞

)
sε.

Rearranging yields ∣∣∣∣∣∣∣∣∣(Â11)
−1 − (A11)

−1
∣∣∣∣∣∣∣∣∣

∞
≤ ϑ2sε

1− ϑsε
≤ 2ϑ2sε, (3.37)

since the L∞/L∞-operator norm of a square matrix is also upper bounded by its

dimension times its maximum norm. The last inequality is due to (3.29). For further

use, note that this implies∣∣∣∣∣∣∣∣∣(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
≤ ϑ+

∣∣∣∣∣∣∣∣∣(Â11)
−1 − (A11)

−1
∣∣∣∣∣∣∣∣∣

∞
≤ ϑ+ 2ϑ2sε ≤ 2ϑ, (3.38)

where in the last inequality we applied (3.29) again.

Using (3.37), it is possible to obtain a sharper bound on the maximum norm

difference between (A11)
−1 and (Â11)

−1. Indeed, note that for any matrices T1, T2, we

have

∥T1T2∥∞ ≤ ∥T1∥∞|||T2|||1, (3.39)

which reduces to ∥T1∥∞∥T2∥1 if T2 is a column vector. Similarly,

∥T1T2∥∞ ≤ |||T1|||∞∥T2∥∞. (3.40)

Repeatedly using those facts, along with symmetry,∥∥∥(Â11)
−1 − (A11)

−1
∥∥∥
∞

=
∥∥∥(Â11)

−1(A11 − Â11)(A11)
−1
∥∥∥
∞

≤
∥∥∥(Â11)

−1(A11 − Â11)
∥∥∥
∞

∣∣∣∣∣∣(A11)
−1
∣∣∣∣∣∣

1

≤
∣∣∣∣∣∣∣∣∣(Â11)

−1
∣∣∣∣∣∣∣∣∣

∞

∥∥∥A11 − Â11

∥∥∥
∞

∣∣∣∣∣∣(A11)
−1
∣∣∣∣∣∣

1

≤ 2ϑ2ε, (3.41)

where in the last step we used the fact that the L1/L1- and L∞/L∞-operator norms

of a symmetric matrix (in this case, (A11)
−1) are equal, along with (3.38).

We now prove that

(A11)
−1A1ℓ = −B1ℓ

Bℓℓ

. (3.42)

If W ∼ N(0, A), it is known that −B1ℓ/Bℓℓ is the vector of non-zero coefficients for

optimal linear prediction of Wℓ using W\ℓ. Since removing the non-predictor variables
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does not change the prediction, we have

−B1ℓ

Bℓℓ

= −B
∗
1ℓ

B∗
ℓℓ

where

B∗ :=

[
A11 A1ℓ

Aℓ1 Aℓℓ

]−1

.

By the inversion formula for block matrices,

−B∗
1ℓ =

1

Aℓℓ

(
A11 −

A1ℓAℓ1
Aℓℓ

)−1

A1ℓ, B∗
ℓℓ =

1

Aℓℓ

(
1− Aℓ1(A11)

−1A1ℓ

Aℓℓ

)−1

,

so letting λ := Aℓ1(A11)−1A1ℓ

Aℓℓ
∈ (0, 1),

−B
∗
1ℓ

B∗
ℓℓ

= (1− λ)
(
A11 −

A1ℓAℓ1
Aℓℓ

)−1

A1ℓ.

Applying Woodbury’s matrix inversion formula, we find(
A11 −

A1ℓAℓ1
Aℓℓ

)−1

= (A11)
−1 − (A11)

−1A1ℓ

(
− Aℓℓ + Aℓ1(A11)

−1A1ℓ

)−1
Aℓ1(A11)

−1

= (A11)
−1 − (A11)

−1A1ℓ
1

Aℓℓ(λ− 1)
Aℓ1(A11)

−1.

Simple matrix algebra yields

−B
∗
1ℓ

B∗
ℓℓ

= (1− λ)(A11)
−1A1ℓ

(
1− 1

Aℓℓ(λ− 1)
Aℓ1(A11)

−1A1ℓ

)
= (1− λ)(A11)

−1A1ℓ

(
1− λ

λ− 1

)
= (A11)

−1A1ℓ,

which finally establishes (3.42).

Similarly, we prove that

A21(A11)
−1A1ℓ = A2ℓ. (3.43)

Indeed, notice that the Schur complement of A11 in A,

A(2,ℓ),(2,ℓ) | 1 :=

[
A22 A2ℓ

Aℓ2 Aℓℓ

]
−

[
A21

Aℓ1

]
(A11)

−1
[
A12 A1ℓ

]
,

is the conditional covariance matrix of the random vector Wne(ℓ)c given Wne(ℓ). The off-

diagonal block of A(2,ℓ),(2,ℓ) | 1, that is, A2ℓ−A21(A11)
−1A1ℓ, is therefore the conditional
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covariance between Wℓ and the other variables not in its neighborhood, given the

variables in its neighborhood. By definition of the neighborhood, this is zero, hence

(3.43) holds.

Proof of (3.34): Using (3.37), we have∣∣∣∣∣∣∣∣∣Â21(Â11)
−1 − A21(A11)

−1
∣∣∣∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣∣∣∣Â21(Â11)

−1 − A21(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
+
∣∣∣∣∣∣∣∣∣A21(Â11)

−1 − A21(A11)
−1
∣∣∣∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣∣∣∣(Â11)

−1
∣∣∣∣∣∣∣∣∣

∞

∣∣∣∣∣∣∣∣∣Â21 − A21

∣∣∣∣∣∣∣∣∣
∞
+ |||A21|||∞

∣∣∣∣∣∣∣∣∣(Â11)
−1 − (A11)

−1
∣∣∣∣∣∣∣∣∣

∞

≤ 2ϑsε+ κ2ϑ2sε

= 2ϑ(1 + κϑ)sε,

where the third inequality follows by applying (3.37) and (3.38). Now by the reverse

triangle inequality,∣∣∣∣∣∣∣∣∣Â21(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
≤
∣∣∣∣∣∣A21(A11)

−1
∣∣∣∣∣∣

∞ +
∣∣∣∣∣∣∣∣∣Â21(Â11)

−1 − A21(A11)
−1
∣∣∣∣∣∣∣∣∣

∞

≤ 1− η + 2ϑ(1 + κϑ)sε.

(3.34) then follows from (3.30).

Proof of (3.35): First, by (3.42),∥∥∥(Â11)
−1Â1ℓ +

B1ℓ

Bℓℓ

∥∥∥
∞

=
∥∥∥(Â11)

−1Â1ℓ − (A11)
−1A1ℓ

∥∥∥
∞

≤
∥∥∥(Â11)

−1Â1ℓ − (Â11)
−1A1ℓ

∥∥∥
∞
+
∥∥∥(Â11)

−1A1ℓ − (A11)
−1A1ℓ

∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣(Â11)

−1
∣∣∣∣∣∣∣∣∣

∞

∥∥∥Â1ℓ − A1ℓ

∥∥∥
∞
+
∥∥∥((Â11)

−1 − (A11)
−1
)∥∥∥

∞
∥A1ℓ∥1

≤ 2ϑε+ 2ϑ2εκ

= 2ϑ(1 + κϑ)ε,

where we first used (3.39) and (3.40), then (3.38) and (3.41). Noting that

ρ

2

∣∣∣∣∣∣∣∣∣(Â11)
−1
∣∣∣∣∣∣∣∣∣

∞
≤ ρ

2
2ϑ = ϑρ,

(3.35) follows from (3.31).

Proof of (3.36): First, by (3.43),∥∥∥Â21(Â11)
−1Â1ℓ − Â2ℓ

∥∥∥
∞

≤
∥∥∥Â21(Â11)

−1Â1ℓ − A21(A11)
−1A1ℓ

∥∥∥
∞
+
∥∥∥Â2ℓ − A2ℓ

∥∥∥
∞
,

the second term of which is clearly upper bounded by ε. The first term above is upper
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bounded by∥∥∥Â21(Â11)
−1Â1ℓ − Â21(A11)

−1A1ℓ

∥∥∥
∞
+
∥∥∥Â21(A11)

−1A1ℓ − A21(A11)
−1A1ℓ

∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣Â21

∣∣∣∣∣∣∣∣∣
∞

∥∥∥(Â11)
−1Â1ℓ − (A11)

−1A1ℓ

∥∥∥
∞
+
∥∥∥Â21 − A21

∥∥∥
∞

∣∣∣∣∣∣(A11)
−1A1ℓ

∣∣∣∣∣∣
1

≤ (κ+ sε)2ϑ(1 + κϑ)ε+ κϑε

≤ 2(1 + κϑ)2ε− ε,

where we used (3.39) and (3.40) and the result in the proof of (3.35) above where we

bound ∥(Â11)
−1Â1ℓ− (A11)

−1A1ℓ∥∞. The final bound was obtained by applying (3.29)

and rearranging. Hence (3.36) follows from (3.32).

Proof that (3.33) recovers the support of B\ℓ,ℓ: Note that

∇θ

{
− 2Âℓ,\ℓθ + θ⊤Â\ℓ,\ℓθ

}
= 2Â\ℓ,\ℓθ − 2Â\ℓ,ℓ

and that the subdifferential of the 1-norm at a point θ ∈ Rp−1 is given by the set of

all x ∈ [−1, 1]p−1 such that

θj ̸= 0 =⇒ xj = sign(θj).

Considering the optimization problem in (3.33), the KKT conditions state that any

point θ̂ satisfying (
2Â\ℓ,\ℓθ̂ − 2Â\ℓ,ℓ

)
Ĵ
= −ρ sign(θ̂Ĵ) (3.44)∥∥(2Â\ℓ,\ℓθ̂ − 2Â\ℓ,ℓ

)
Ĵc

∥∥
∞ ≤ ρ (3.45)

where Ĵ := {j ∈ [p− 1] : θ̂j ≠ 0}, is a solution. Following the arguments in the proof

of Proposition 1 in Zhao and Yu (2006), we shall identify one such solution that has

the right support. We will subsequently show that it is unique, utilizing arguments

similar to (but not implied by) what is found in Section 2.1 of Tibshirani (2013).

Let θ∗ := −B\ℓ,ℓ/Bℓℓ and θ∗1, θ
∗
2 denote its subvectors indexed by ne(ℓ) and

ne(ℓ)c\{ℓ}, respectively1; we will use the same notation for θ̂ defined below. The

candidate solution θ̂ is defined by θ̂2 = 0 and

θ̂1 := (Â11)
−1
(
Â1ℓ −

ρ

2
sign(θ∗1)

)
,

1For simplicity, we slightly abuse the notation here. In fact, θ∗1 and θ∗2 are the subvectors that, in the product
A\ℓ,\ℓθ

∗, are multiplied by the columns of A corresponding to variables in ne(ℓ) and in ne(ℓ)c\{ℓ}, respectively.
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where the sign function is applied to θ∗1 coordinate-wise. First note that by (3.35),

∥θ̂1 − θ∗1∥∞ < min
i∈ne(ℓ)

|θ∗i |,

hence sign(θ∗1) = sign(θ̂1). Thus, we find

2Âne(ℓ),\ℓθ̂ − 2Â1ℓ = 2Â11θ̂1 − 2Â1ℓ = −ρ sign(θ∗1) = −ρ sign(θ̂1),

i.e., (3.44) is satisfied. Next, by (3.34) and (3.36) we have

∥2Âne(ℓ)c\{ℓ},\ℓθ̂ − 2Â2ℓ∥∞ = ∥2Â21θ̂1 − 2Â2ℓ∥∞

=
∥∥∥2Â21(Â11)

−1Â1ℓ − 2Â2ℓ − ρÂ21(Â11)
−1 sign(θ∗1)

∥∥∥
∞

≤ 2
∥∥∥Â21(Â11)

−1Â1ℓ − Â2ℓ

∥∥∥
∞
+ ρ
∣∣∣∣∣∣∣∣∣Â21(Â11)

−1
∣∣∣∣∣∣∣∣∣

∞

<
ρη

2
+ ρ
(
1− η

2

)
= ρ,

i.e., (3.45) is satisfied. Therefore, we have proved the existence of a solution θ̂ to (3.33)

which has the same sign pattern (hence the same support) as θ∗.

It remains to show that this solution is unique. We first prove a weaker statement:

Â\ℓ,\ℓθ̃ is unique across all solutions θ̃ to (3.33). Indeed, suppose that θ̃(1) and θ̃(2)

are two distinct solutions such that Â\ℓ,\ℓθ̃
(1) ≠ Â\ℓ,\ℓθ̃

(2). Let W be a (possibly

rectangular) matrix such that Â\ℓ,\ℓ = W⊤W ; for instance, W can be obtained from

a Cholesky decomposition. By assumption, Wθ̃(1) ̸= Wθ̃(2). Both points being a

solution means that the objective function in (3.33) attains its minimum value at both

points: if

Q(θ) := −2Âℓ,\ℓθ + ∥Wθ∥22 + ρ∥θ∥1,

then Q(θ̃(1)) = Q(θ̃(2)) = minθQ(θ) =: vmin, say. Then, evaluating Q at a point

αθ̃(1) + (1− α)θ̃(2), for some α ∈ (0, 1), yields

− 2Âℓ,\ℓ
(
αθ̃(1) + (1− α)θ̃(2)

)
+
∥∥αWθ̃(1) + (1− α)Wθ̃(2)

∥∥2
2
+ ρ
∥∥αθ̃(1) + (1− α)θ̃(2)

∥∥
1

< α
{
− 2Âℓ,\ℓθ̃

(1) + ∥Wθ̃(1)∥22 + ρ∥θ̃(1)∥1
}

+ (1− α)
{
− 2Âℓ,\ℓθ̃

(2) + ∥Wθ̃(2)∥22 + ρ∥θ̃(2)∥1
}

= αQ(θ̃(1)) + (1− α)Q(θ̃(2))

= vmin,

where the strict inequality is a consequence of the strict convexity of the squared
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Euclidean norm and the convexity of the 1-norm. This is a contradiction since vmin was

assumed to be the minimum value. Hence Â\ℓ,\ℓθ̃ must be unique across all solutions

θ̃ of (3.33).

Now, using this preliminary uniqueness result, we notice that for any solution θ̃,

we have ∥∥∥2Âne(ℓ)c\{ℓ},\ℓθ̃ − 2Â2ℓ

∥∥∥
∞

=
∥∥∥2Âne(ℓ)c\{ℓ},\ℓθ̂ − 2Â2ℓ

∥∥∥
∞
< ρ,

hence θ̃2 = 0. Therefore,

2Â11θ̃1 − 2Â1ℓ = 2Âne(ℓ),\ℓθ̃ − 2Â1ℓ = 2Âne(ℓ),\ℓθ̂ − 2Â1ℓ = −ρ sign(θ∗1),

which uniquely defines θ̃1 by the invertibility of Â11. Deduce that θ̃ = θ̂. □

3.10.2 Proof of Proposition 3.4

First note that the assumed bound on ε implies

ε ≤ αρ

8
, (3.46)

2κΩ(ε+ ρ) ≤ min

{
1

3κAs
,

1

3κ3AκΩs

}
, (3.47)

6κ3Aκ
2
Ωs(ε+ ρ) ≤ α

9
≤ 1

1 + 8/α
, (3.48)

2κΩ(ε+ ρ) ≤ 1

2
min

i ̸=j,Bij ̸=0
|Bij|. (3.49)

Without loss of generality, assume that ρ > 0. Otherwise, (3.46) implies that Â = A,

in which case the result is trivial.

The proof is heavily based on that of Theorems 1 and 2 of Ravikumar et al. (2011).

Note that by assumption, each diagonal element of Â satisfies Âii ≥ Aii − ε > 0,

i ∈ [p]. Then by Lemma 3 of that paper, the positivity of ρ ensures that the solution

B̂ exists, is unique and satisfies

−B̂−1 + Â+ ρZ = 0,

for some matrix Z in the sub-differential of the off-diagonal norm at the point B̂, as

defined in Ravikumar et al. (2011). The strategy is now to consider the solution B̃ of

the graphical lasso optimization problem with the additional constraint that BSc = 0,

which is also guaranteed to exist and to be unique by (3.46). Define ∆ := ∥B̃ −B∥∞.

By (3.47), the condition of Lemma 6 of Ravikumar et al. (2011) is satisfied. It then

follows from that result that ∥∆∥∞ ≤ 2κΩ(ε + ρ). Lemma 5 from that paper now
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implies that the matrix R(∆), as defined therein, satisfies

∥R(∆)∥∞ ≤ 3

2
κ3As∥∆∥2∞ ≤ 6κ3Aκ

2
Ωs(ε+ ρ)2 ≤ ε+ ρ

1 + 8/α
≤ (α/8 + 1)ρ

1 + 8/α
=
αρ

8
,

where the last three inequalities are due to the previously obtained bound on ∥∆∥∞,

to (3.48) and to (3.46), respectively. Now that ε ∨ ∥R(∆)∥∞ ≤ αρ/8, we may apply

Lemma 4 of Ravikumar et al. (2011) and find that in fact, B̂ = B̃. It follows, by

definition of B̃, that B̂ij = 0 for all (i, j) ∈ Sc and that for (i, j) ∈ S, i ̸= j,

|B̂ij −Bij| ≤ ∥∆∥∞ ≤ |Bij|
2

by (3.49). That is, the element-wise error is too small for B̂ij to reach 0. We have

therefore guaranteed that the sparsity pattern of B̂ is the same as that of B. □

3.11 Proof of Theorem 3.3

We start by introducing useful additional notation and auxiliary variables that will

be useful throughout this proof. For ℓ ∈ {1, 2}, let e
(m),ℓ
i := E[(log Y (m)

i )ℓ] and

e
(m)
ij := E[(log Y (m)

i )(log Y
(m)
j )]. Then we have

Γ
(m)
ij = e

(m),2
i + e

(m),2
j − 2e

(m)
ij −

(
e
(m),1
i − e

(m),1
j

)2
, i ̸= j,m ∈ V. (3.50)

Similarly

Γ̂
(m)
ij = ê

(m),2
i + ê

(m),2
j − 2ê

(m)
ij −

(
ê
(m),1
i − ê

(m),1
j

)2
, i ̸= j,m ∈ V,

where

ê
(m),ℓ
i :=

1

k

n∑
t=1

{
log
( k

nF̂i(Uti)

)}ℓ
1
{
F̂m(Utm) ≤ k/n

}
,

ê
(m)
ij :=

1

k

n∑
t=1

log
( k

nF̂j(Utj)

)
log
( k

nF̂i(Uti)

)
1
{
F̂m(Utm) ≤ k/n

}
,

Uti := 1 − Fi(Xti), 1 ≤ t ≤ n, are independent and uniformly distributed, and

F̂i is the (right-continuous) empirical distribution function of (Uti)1≤t≤n, satisfying

F̂i(Uti) = 1− F̃i(Xti).

Let i ̸= j and m be arbitrary. An expression for the estimation error is given by

Γ̂
(m)
ij − Γ

(m)
ij =

(
ê
(m),2
i − e

(m),2
i

)
+
(
ê
(m),2
j − e

(m),2
j

)
− 2
(
ê
(m)
ij − e

(m)
ij

)
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− 2
(
e
(m),1
i − e

(m),1
j

)((
ê
(m),1
i − e

(m),1
i

)
−
(
ê
(m),1
j − e

(m),1
j

))
−
((
ê
(m),1
i − e

(m),1
i

)
−
(
ê
(m),1
j − e

(m),1
j

))2
, (3.51)

the last two terms stemming from the identity y2 − x2 = 2x(y − x) + (y − x)2. In

order to prove the result, it is sufficient to bound the differences

ê
(m),ℓ
i − e

(m),ℓ
i , ê(m),ℓ

m − e(m),ℓ
m , ê

(m)
im − e

(m)
im , ê

(m)
ij − e

(m)
ij

for all distinct triples (i, j,m) and ℓ ∈ {1, 2}. The terms ê
(m),ℓ
m − e

(m),ℓ
m are entirely

deterministic, since it is known that the observations Xtm that are used for the

estimator Γ̂(m) have ranks n − k + 1, . . . , n (by continuity, it can be assumed that

there are no ties in the data). They are on the order of (log k)ℓ/k, as is proved in

Section 3.12.3. The rest of the proof thus focuses on the other three differences.

3.11.1 Preliminaries, additional notation and structure of the proof

Recall that F̂i is the empirical distribution function of (Uti)1≤t≤n and denote its left-

continuous inverse by F̂−
i , where f

−(t) := inf{x : f(x) ≥ t}. Consider the rescaled

tail quantile processes

u(i)n (x) :=
n

k
F̂−
i (kx/n). (3.52)

Similarly to R and its margins RJ , J ⊂ V , let

R̂0
J(xJ) :=

1

k

n∑
t=1

1

{
Uti ≤

k

n
xi, i ∈ J

}
, R̂J(xJ) := R̂0

J(x̂J), xJ ∈ [0,∞)|J |,

(3.53)

where x̂J := (u
(i)
n (xi))i∈J . The function R̂J can be seen as the tail empirical copula of

the random vector UJ . As an intermediate between RJ and R̂J , let

RJ,n(xJ) :=
n

k
P
(
UJ ≤ k

n
xJ

)
=
n

k
P
(
FJ(XJ) > 1− k

n
xJ

)
,

the pre-asymptotic version of RJ .

The function RJ can be seen as a measure on [0,∞)|J | and for measurable sets

Ai ⊂ R, we will write RJ((Ai)i∈J) to denote RJ(⊗i∈JAi). If in place of one of

the Ai there is a number ai, it will be understood that Ai = [0, ai]. For example,

Rij([x,∞), y) = Rij([x,∞)× [0, y]). We use the same conventions for the functions

RJ,n, R̂
0
J and R̂J , as well as GJ,n and R̄J to be defined later.

The functions RJ , RJ,n, R̂
0
J and R̂J enjoy certain properties which will be used

throughout the proof, as well as throughout Section 3.12: they are non-decreasing

in each component and are upper bounded by their minimum argument. Beyond
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component-wise monotonicity, the induced measures, as described above, are non-

negative. The functions RJ moreover inherit the homogeneity property of multivariate

Pareto distributions (RJ(qxJ) = qRJ(xJ), q ≥ 0).

From now on, fix a number a ∈ (0, 1). It is proved in Lemma 3.7 that for all distinct

triples (i, j,m) and ℓ ∈ {1, 2}, we have

ê
(m),ℓ
i − e

(m),ℓ
i =

∫ 1

a

(
R̂im(x, 1)−Rim(x, 1)

)
(−2 log x)ℓ−1

x
dx

−
∫ n/k

1

(
R̂im([x,∞), 1)−Rim([x,∞), 1)

)
(−2 log x)ℓ−1

x
dx

+O

((k
n

)ξ
log(n/k) +

(log(n/k) + log(1/a))2

k

+ a(log(n/k) + log(1/a))

)
, (3.54)

ê
(m)
im − e

(m)
im =

∫ 1

a

∫ 1

a

R̂im(x, y)−Rim(x, y)

xy
dxdy

−
∫ 1

a

∫ n/k

1

R̂im([x,∞), y)−Rim([x,∞), y)

xy
dxdy

+O

((k
n

)ξ
log(n/k) +

(log(n/k) + log(1/a))2

k

+ a(log(n/k) + log(1/a))

)
, (3.55)

ê
(m)
ij − e

(m)
ij =

∫ 1

a

∫ 1

a

R̂ijm(x, y, 1)−Rijm(x, y, 1)

xy
dxdy

−
∫ 1

a

∫ n/k

1

R̂ijm([x,∞), y, 1)−Rijm([x,∞), y, 1)

xy
dxdy

−
∫ n/k

1

∫ 1

a

R̂ijm(x, [y,∞), 1)−Rijm(x, [y,∞), 1)

xy
dxdy

+

∫ n/k

1

∫ n/k

1

R̂ijm([x,∞), [y,∞), 1)−Rijm([x,∞), [y,∞), 1)

xy
dxdy

+O

((k
n

)ξ
log(n/k) +

(log(n/k) + log(1/a))2

k

+ a(log(n/k) + log(1/a))

)
(3.56)

almost surely, where the error terms are not stochastic. We shall separately bound
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each of the eight integrals above. Denote these integrals, in order of appearance in

(3.54) to (3.56), by I(m),ℓ,−
i , I(m),ℓ,+

i , I(m),−−
im , I(m),+−

im , I(m),−−
ij , I(m),+−

ij , I(m),−+
ij and

I(m),++
ij .

The processes R̂J − RJ can be decomposed into the stochastic error R̂J − RJ,n

and the difference RJ,n −RJ between the tail at finite and infinite levels. Replacing

R̂J −RJ by (R̂J −RJ,n) + (RJ,n −RJ), each integral I(m),·
· is written as

I(m),·
· =: A(m),·

· +B(m),·
· ,

where the A terms are stochastic and the B terms represent deterministic bias.

We proceed as follows. In Section 3.11.2, it is shown that Assumption 3.1 is

sufficient to bound all the bias terms, up to a constant, by (k/n)ξ(log(n/k)+log(1/a))2.

Subsequently, we prove in Section 3.11.3 concentration results for the stochastic terms

which are then leveraged in Section 3.11.4 to complete the proof.

Before moving on, we highlight some consequences of Assumption 3.1 and Proposi-

tion 3.1 in terms of the functions RJ,n and RJ . For any distinct triple (i, j,m) and

q ∈ (0, 1],

sup
x≤n/k,y≤1

|Rij,n(x, y)−Rij(x, y)| ≤ 2K
(k
n

)ξ
, (3.57)

sup
x≤n/k,y≤n/k,z≤1

|Rijm,n(x, y, z)−Rijm(x, y, z)| ≤ K
(k
n

)ξ
, (3.58)

1−Rijm(q
−1, q−1, 1) ≤ 1−Rim(q

−1, 1) + 1−Rjm(q
−1, 1) ≤ 2Kqξ; (3.59)

to obtain the first inequality in (3.59), apply the inequality

P ([0, q−1]× [0, q−1]) ≥ P ([0, q−1]× [0,∞)) + P ([0,∞)× [0, q−1])− 1,

valid for probability measures P on [0,∞)2, with P = Rijm(· × [0, 1]).

3.11.2 The bias terms B

(3.57) directly implies

∣∣B(m),ℓ,−
i

∣∣ ≤ ∫ 1

a

∣∣Rim,n(x, 1)−Rim(x, 1)
∣∣(−2 log x)ℓ−1

x
dx

≤ 2K
(k
n

)ξ ∫ 1

a

(−2 log x)ℓ−1

x
dx

≲
(k
n

)ξ
(log(1/a))ℓ,
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∣∣B(m),ℓ,+
i

∣∣ ≤ ∫ n/k

1

∣∣Rim,n([x,∞), 1)−Rim([x,∞), 1)
∣∣(2 log x)ℓ−1

x
dx

≤ 2K
(k
n

)ξ ∫ n/k

1

(2 log x)ℓ−1

x
dx

≲
(k
n

)ξ
(log(n/k))ℓ,

∣∣B(m),−−
im

∣∣ ≤ ∫ 1

a

∫ 1

a

∣∣Rim,n(x, y)−Rim(x, y)
∣∣

xy
dxdy

≤ 2K
(k
n

)ξ ∫ 1

a

∫ 1

a

1

xy
dxdy

≲
(k
n

)ξ
(log(1/a))2,

∣∣B(m),+−
im

∣∣ ≤ ∫ 1

a

∫ n/k

1

∣∣Rim,n([x,∞), y)−Rim([x,∞), y)
∣∣

xy
dxdy

≤ 2K
(k
n

)ξ ∫ 1

a

∫ n/k

1

1

xy
dxdy

≲
(k
n

)ξ
(log(n/k))(log(1/a)).

Note further that by (3.58), B
(m),−−
ij admits the same bound as B

(m),−−
im . Similarly,

B
(m),+−
ij , and by symmetry B

(m),−+
ij , admit the same bound as B

(m),+−
im . Finally, since

Rijm([x,∞), [y,∞), 1) = 1−Rjm(y, 1)−Rim(x, 1) +Rijm(x, y, 1)

and the same relation holds for Rijm,n, (3.57) and (3.58) also imply that

sup
x≤n/k,y≤n/k

|Rijm,n([x,∞), [y,∞), 1)−Rijm([x,∞), [y,∞), 1)| ≤ 5K
(k
n

)ξ
.

Deduce that

∣∣B(m),++
ij

∣∣ ≤ ∫ n/k

1

∫ n/k

1

∣∣Rijm,n([x,∞), [y,∞), 1)−Rijm([x,∞), [y,∞), 1)
∣∣

xy
dxdy

≤ 5K
(k
n

)ξ ∫ n/k

1

∫ n/k

1

1

xy
dxdy

≲
(k
n

)ξ
(log(n/k))2.



CHAPTER 3. LEARNING EXTREMAL GRAPHICAL MODELS IN HIGH DIMENSIONS 146

3.11.3 The stochastic error terms A

It remains to bound the stochastic error terms A·
·, which entirely depend on the

processes R̂J −RJ,n. Recall how, for xJ ∈ [0,∞)|J |, we define x̂J in (3.53). Consider

further the relation R̂J(xJ) = R̂0
J(x̂J). We shall rely on the decomposition

R̂J(xJ)−RJ,n(xJ) =
(
R̂0
J(x̂J)−RJ,n(x̂J)

)
+
(
RJ,n(x̂J)−RJ,n(xJ)

)
=
(
GJ,n(x̂J)−GJ,n(xJ)

)
+GJ,n(xJ) +

(
RJ,n(x̂J)−RJ,n(xJ)

)
,

(3.60)

where

GJ,n := R̂0
J −RJ,n. (3.61)

Accordingly, each A·
· term is further decomposed into three integrals A·

·,1, A
·
·,2 and

A·
·,3. For instance,

A
(m),−−
ij = A

(m),−−
ij,1 + A

(m),−−
ij,2 + A

(m),−−
ij,3

:=

∫ 1

a

∫ 1

a

Gijm,n(u
(i)
n (x), u

(j)
n (y), u

(m)
n (1))−Gijm,n(x, y, 1)

xy
dxdy

+

∫ 1

a

∫ 1

a

Gijm,n(x, y, 1)

xy
dxdy

+

∫ 1

a

∫ 1

a

Rijm,n(u
(i)
n (x), u

(j)
n (y), u

(m)
n (1))−Rijm,n(x, y, 1)

xy
dxdy. (3.62)

The first of the three terms in (3.60) is proportional to a standard empirical

process evaluated at a set corresponding to the difference between xJ and x̂J . It will

be uniformly bounded by using well known concentration inequalities for empirical

processes appearing in Koltchinskii (2006) and Massart (2000). The second term, GJ,n,

is now a rescaled sum of n independent and identically distributed (iid) processes

which, when integrated as in (3.62), becomes a sum of iid, bounded random variables.

We will be able to control this sum via Bernstein’s inequality. Finally, the third

term relates to the difference between xJ and x̂J . It can be controlled by weighted

approximation results on the uniform quantile processes given in Lemmas 3.1 and 3.2.

Two bounds are then proved on the corresponding term in (3.62), the stronger of

which only holds under Assumption 3.2. This gives rise to the two desired results.

Technical preliminaries on uniform quantile processes

Before tackling each term in (3.62), we prove a few properties of the rescaled quantile

functions u
(i)
n which will be used throughout. In Lemma 3.1, we first prove an
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approximation of u
(i)
n by a certain Gaussian process. We then establish various

properties of u
(i)
n and its approximation in Corollary 3.1 and Lemma 3.2.

Lemma 3.1. For any fixed i ∈ V , define the random function u
(i)
n as in (3.52) and

let 0 < ν < 1/2. There exist random functions w
(i)
n defined on a possibly enriched

probability space and universal constants A,B,C ∈ (0,∞) such that for any z > 0,

P
(

sup
x∈[0,n/k]

|u(i)n (x)− w(i)
n (x)| > k−1(A log n+ z)

)
≤ Be−Cz.

Moreover, the functions w
(i)
n , along with constants Ã, B̃, C̃ possibly depending on ν,

can be chosen such that for any z > 0,

P
(
max

{
sup

0≤x≤1

|w(i)
n (x)− x|
xν

, sup
1≤x≤n/k

|w(i)
n (x)− x|
x1−ν

}
> k−1/2(Ã+ z)

)
≤ B̃e−C̃z

2

.

Proof. By definition, the quantile function F̂−
i appearing in u

(i)
n (x) is the right-

continuous function

F̂−
i (x) = Uni,⌊nx⌋,

where Uni,j is the jth order statistic from the sample U1i, . . . , Uni. We use the

convention Uni,0 = 0. Similarly define the left-continuous quantile function

F̂+
i (x) = Uni,⌈nx⌉.

Theorem 1 from Csorgo and Revesz (1978) states that for every z > 0,

P
(

sup
x∈[0,1]

|(F̂+
i (x)− x)− n−1/2Bn(x)| > n−1(A+ log n+ z)

)
≤ B+e−C

+z,

for positive constants A+, B+, C+ and a sequence of Brownian bridges Bn. We

first establish a similar tail bound for the right-continuous quantile function. Using

⌊y⌋ ≥ ⌈y⌉ − 1 = ⌈y − 1⌉, note that

F̂+
i (x) ≥ F̂−

i (x) ≥ Uni,⌈nx−1⌉ = F̂+
i (x− 1/n),

so for every x ∈ [0, 1], using the convention F̂+
i (x) = F̂+

i (0) if x < 0,

0 ≤ F̂+
i (x)− F̂−

i (x) ≤ F̂+
i (x)− F̂+

i (x− 1/n)

≤ 2 sup
x∈[0,1]

|(F̂+
i (x)− x)− n−1/2Bn(x)|

+
∣∣∣(x+ n−1/2Bn(x)

)
−
(
x− 1

n
+ n−1/2Bn(x− 1/n)

)∣∣∣
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≤ 2 sup
x∈[0,1]

|(F̂+
i (x)− x)− n−1/2Bn(x)|+

1

n
+ n−1/2|Bn(x)−Bn(x− 1/n)|.

Thus

sup
x∈[0,1]

|(F̂−
i (x)− x)− n−1/2Bn(x)|

≤ 3 sup
x∈[0,1]

|(F̂+
i (x)− x)− n−1/2Bn(x)|+

1

n
+ n−1/2|Bn(x)−Bn(x− 1/n)|.

Using the covariance function of the standard Brownian bridge, n−1/2(Bn(x)−Bn(x−
1/n)) is normally distributed with mean 0 and variance upper bounded by 4/n2. Thus,

its absolute value is upper bounded by
√
z/n with probability greater than 1− e−z/4.

Therefore,

P
(

sup
x∈[0,1]

|(F̂−
i (x)−x)−n−1/2Bn(x)| > n−1(3A+ log n+3z+1+

√
z)
)
≤ B+e−C

+z+e−z/4

which implies, for the right choice of A,B,C,

P
(

sup
x∈[0,1]

|(F̂−
i (x)− x)− n−1/2Bn(x)| > n−1(A log n+ z)

)
≤ Be−Cz. (3.63)

Now define

w(i)
n (x) := x+ n−1/2n

k
Bn(kx/n).

Then

u(i)n (x)− w(i)
n (x) =

n

k
F̂−
i (kx/n)− x− n−1/2n

k
Bn(kx/n)

=
n

k

(
F̂−
i (kx/n)−

kx

n
− n−1/2Bn(kx/n)

)
.

Thus for w
(i)
n defined above

P
(

sup
x∈[0,n/k]

|u(i)n (x)− w(i)
n (x)| > k−1(A log n+ z)

)
= P

(
sup

x∈[0,n/k]

n

k

∣∣∣F̂−
i (kx/n)−

kx

n
− n−1/2Bn(kx/n)

∣∣∣ > k−1(A log n+ z)
)

= P
(

sup
x∈[0,1]

∣∣∣F̂−
i (x)− x− n−1/2Bn(x)

∣∣∣ > n−1(A log n+ z)
)

≤ Be−Cz

by (3.63), which proves the first claim.
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We now prove the second claim. Let

Zn(x) := n−1/2n

k
Bn(kx/n).

Observe that

{Zn(x)}x∈[0,n/k]
D
=
{
n−1/2n

k
Wn(kx/n)− n−1/2xWn(1)

}
x∈[0,n/k]

D
=
{
k−1/2Wn(x)− k−1/2kx/nWn(n/k)

}
x∈[0,n/k]

,

where Wn are standard Wiener processes on [0,∞). If the sequences of suprema

sup0<x≤1 k
1/2|Zn(x)|/xν and sup1≤x≤n/k k

1/2|Zn(x)|/x1−ν are uniformly tight, their

distributions have finite medians independent of n. Hence by Proposition A.2.1 of

van der Vaart and Wellner (1996), there exist constants Ã, B̃, C̃, depending only on

those medians, such that

P
(
max

{
sup

0<x≤1

k1/2|Zn(x)|
xν

, sup
1≤x≤n

k

k1/2|Zn(x)|
x1−ν

}
> Ã+ z

)
≤ B̃e−C̃z

2

.

and the result follows.

To establish tightness, note that since ν < 1/2,

sup
0<x≤1

k1/2|Zn(x)|
xν

≤ sup
0<x≤1

|Wn(x)|
xν

+
k

n
|Wn(n/k)| = OP

(
1 +

√
k

n

)
= OP (1)

and

sup
1≤x≤n

k

k1/2|Zn(x)|
x1−ν

≤ sup
1≤x<∞

|Wn(x)|
x1−ν

+
(k
n

)1−ν
|Wn(n/k)|

= OP

(
1 +

(k
n

)1/2−ν√
log log

n

k

)
= OP (1) ,

where we used the law of the iterated logarithm at 0 and at ∞, respectively, for Wiener

processes (see for instance Durrett, 2010, Section 8.11). Note that the probability

bounds on the suprema above, and hence the bounds on their medians, are uniform

in n but may depend on ν, hence the dependence of the constants Ã, B̃, C̃ on this

parameter. □
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Let w
(i)
n be as in the proof of Lemma 3.1. For a ∈ (0, 1) and ν1, ν2 ∈ [0, 1], let

∆̃(i)
n (a, ν1, ν2) = max

{
sup
a≤x≤1

|w(i)
n (x)− x|
xν1

, sup
1≤x≤n/k

|w(i)
n (x)− x|
x1−ν2

}
and

∆̃(i)
n (a, ν) = ∆̃(i)

n (a, ν, ν).

Similarly, let

∆̂(i)
n (a, ν1, ν2) = max

{
sup
a≤x≤1

|u(i)n (x)− x|
xν1

, sup
1≤x≤n/k

|u(i)n (x)− x|
x1−ν2

}
and

∆̂(i)
n (a, ν) = ∆̂(i)

n (a, ν, ν).

It is established in Lemma 3.1 that there are constants Ã, B̃, C̃ only depending on

ν ∈ (0, 1/2) such that

P
(
∆̃(i)
n (0, ν) > k−1/2(Ã+ z)

)
≤ B̃e−C̃z

2

.

Lemma 3.1 also allows to obtain a certain bound for the terms ∆̂
(i)
n .

Corollary 3.1. Let ∆̂
(i)
n be as above. There exist constants Â, B̂, Ĉ depending only

on ν ∈ (1/2) such that for all z ≥ 0,

P
(
∆̂(i)
n (0, 0, ν) > Â

( 1√
k
+

log n

k

)
+

√
z

k
+
z

k

)
≤ B̂e−Ĉz.

Proof. Write

∆̂(i)
n (0, 0, ν) ≤ ∆̃(i)

n (0, 0, ν) +
∣∣∆̂(i)

n (0, 0, ν)− ∆̃(i)
n (0, 0, ν)

∣∣
≤ ∆̃(i)

n (0, ν) + max

{
sup

0≤x≤1
|u(i)n (x)− w(i)

n (x)|, sup
1≤x≤n/k

|u(i)n (x)− w
(i)
n (x)|

x1−ν

}
≤ ∆̃(i)

n (0, ν) + sup
0≤x≤n/k

|u(i)n (x)− w(i)
n (x)|,

where the second inequality follows form the fact that for two functions f and g

defined on the same domain, | supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)|.
By Lemma 3.1, the first term above is larger than (Ã+

√
z)/

√
k with probability

at most B̃e−C̃z and the second one is larger than (A log n+ z)/k with probability at

most Be−Cz. The result follows by the right choice of Â, B̂, Ĉ.
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Lemma 3.2. With w
(i)
n as above, there exists a universal positive constant c′ such

that for all a ∈ (0, 1),

P
(

sup
a≤x≤n/k

|w(i)
n (x)− x|

x
> 1/2

)
≤ 6 exp

{
− c′k

(
1 ∧ a

log log(1/a)

)}
.

Proof. From the proof of Lemma 3.1, there is a standard Brownian motion W such

that {w(i)
n (x)− x}x∈[a,n/k] is equal in distribution to the zero-mean Gaussian process

{Zn(x)}x∈[a,n/k] :=
{
W (x)/

√
k −

√
kx/nW (n/k)

}
x∈[a,n/k]

.

Assume first that a ≤ e−2. We are therefore interested in

sup
x∈[a,n/k]

|Zn(x)|
x

(3.64)

≤ 1√
k

(
sup

x∈[a,n/k]

|W (x)|
x

+
k

n
W (n/k)

)
≤ 1√

k

(
sup

x∈[a,e−2]

√
log log(1/x)

x

|W (x)|√
x log log(1/x)

+ sup
x∈[e−2,n/k]

|W (x)|
x

+
k

n
W (n/k)

)
≤ 1√

k

(√
log log(1/a)

a
sup

x∈[0,e−2]

|W (x)|√
x log log(1/x)

+ sup
x∈[e−2,∞)

|W (x)|
x

+
k

n
W (n/k)

)
.

(3.65)

By the laws of the iterated logarithm at 0 and at infinity, respectively, the above two

suprema of Gaussian processes are tight random variables. It follows that they have

finite medians and hence, by Proposition A.2.1 of van der Vaart and Wellner (1996),

that they have sub-Gaussian tails. The same can be said of the uniformly (in n) tight

random variable k
n
W (n/k). Therefore,

P
(

sup
x∈[a,n/k]

|Zn(x)|
x

> 1/2

)
≤ P

(
sup

x∈[0,e−2]

|W (x)|√
x log log(1/x)

>

√
ka

6
√
log log(1/a)

)
+ P

(
sup

x∈[e−2,∞)

|W (x)|
x

>

√
k

6

)
+ P

(
k

n
W (n/k) >

√
k

6

)
≤ 2 exp

{
− c1

ka

log log(1/a)

}
+ 2e−c2k + 2e−c3k,

for some universal positive constants c1, c2, c3. The result follows for some c′ depending

on those three constants only.

If, instead, a > e−2, then the sum of the last two terms of (3.65) is a valid bound

in itself. The rest of the proof goes through and we obtain, instead, the upper bound
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4e−c
′k.

In particular, Lemma 3.2 lower bounds the probability that for all x ∈ [a, n/k],

x/2 ≤ w
(i)
n (x) ≤ 2x, which will be repeatedly used in Section 3.11.3.

The following sections are respectively dedicated to each of the three terms of the

decomposition introduced in (3.60).

Increments of empirical processes

We first consider the terms A·
·,1. In this section we prove that for any ν ∈ (0, 1/2)

there exists a constant C1 < ∞ (which can also depend on the constant K from

Assumption 3.1) such that for any ε ≤ 1,

P
(
max

∣∣A·
·,1
∣∣ > C1(log(n/k) + log(1/a))2

{( log(n/k)
k

)1/2(
(k/n)ξ + ε

)1/2
+

log(n/k)

k
+

λ√
k

(
(k/n)ξ + ε

)1/2
+
λ2

k

})
≤ d3e−λ

2

+ P
(
max
i∈V

∆̂(i)
n (a, 0, ν) > ε

)
.

Consider the following decompositions. For all x, y ∈ [a, 1], the numerator in the

integral A
(m),−−
ij,1 satisfies∣∣Gijm,n(u

(i)
n (x), u(j)n (y), u(m)

n (1))−Gijm,n(x, y, 1)
∣∣

≤
∣∣Gijm,n(u

(i)
n (x), u(j)n (y), [1 ∧ u(m)

n (1), 1 ∨ u(m)
n (1)])

∣∣
+
∣∣Gijm,n(u

(i)
n (x), [y ∧ u(j)n (y), y ∨ u(j)n (y)], 1)

∣∣
+
∣∣Gijm,n([x ∧ u(i)n (x), x ∨ u(i)n (x)], y, 1)

∣∣.
The numerators in A

(m),−−
im,1 and A

(m),ℓ,−
i,1 satisfy a similar bound with only the first two

terms, up to a logarithmic factor that is everywhere bounded by log(1/a) in the case

of A
(m),2,−
i,1 .

For all x ∈ [1, n/k], y ∈ [a, 1], the numerator in the integral A
(m),+−
ij,1 satisfies∣∣Gijm,n([u

(i)
n (x),∞), u(j)n (y), u(m)

n (1))−Gijm,n([x,∞), y, 1)
∣∣

≤
∣∣Gijm,n([u

(i)
n (x),∞), u(j)n (y), [1 ∧ u(m)

n (1), 1 ∨ u(m)
n (1)])

∣∣
+
∣∣Gijm,n([u

(i)
n (x),∞), [y ∧ u(j)n (y), y ∨ u(j)n (y)], 1)

∣∣
+
∣∣Gijm,n([x ∧ u(i)n (x), x ∨ u(i)n (x)], y, 1)

∣∣.
The numerators in A

(m),+−
im,1 and A

(m),ℓ,+
i,1 satisfy a similar bound with only the first two

terms, up to a logarithmic factor that is everywhere bounded by log(n/k) in the case
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of A
(m),2,+
i,1 , as well as the numerators in A

(m),−+
ij,1 by symmetry.

For all x, y ∈ [1, n/k], the numerator in the integral A
(m),++
ij,1 satisfies∣∣Gijm,n([u

(i)
n (x),∞), [u(j)n (y),∞), u(m)

n (1))−Gijm,n([x,∞), [y,∞), 1)
∣∣

≤
∣∣Gijm,n([u

(i)
n (x),∞), [u(j)n (y),∞), [1 ∧ u(m)

n (1), 1 ∨ u(m)
n (1)])

∣∣
+
∣∣Gijm,n([u

(i)
n (x),∞), [y ∧ u(j)n (y), y ∨ u(j)n (y)], 1)

∣∣
+
∣∣Gijm,n([x ∧ u(i)n (x), x ∨ u(i)n (x)], [y,∞), 1)

∣∣.
Define, for any ε ∈ (0, 1], F(ε) := ∪i,j,mFijm(ε) where

Fijm(ε) :=
{n
k
1 k

n
S : S ∈ S−

ijm ∪ S+
ijm

}
,

and where the classes of sets S−
ijm and S+

ijm are defined as

S−
ijm :=

{
{w ∈ [0,∞)d : x− ε ≤ wi ≤ x+ ε, aj ≤ wj ≤ bj, am ≤ wm ≤ bm} :

a ≤ x ≤ 1, aj, bj, am, bm ∈ [0,∞]
}
,

and

S+
ijm :=

{
{w ∈ [0,∞)d : x− x1−νε ≤ wi ≤ x+ x1−νε, aj ≤ wj ≤ bj, 0 ≤ wm ≤ 1} :

1 ≤ x ≤ n/k, aj, bj,∈ [0,∞]
}
.

Recalling the definition of ∆̂
(i)
n (a, 0, ν), it follows from the definition of the class F(ε)

that whenever

∆̂(i)
n (a, 0, ν) = max

i∈V
max

{
sup
a≤x≤1

|u(i)n (x)− x|, sup
1≤x≤n/k

|u(i)n (x)− x|
x1−ν

}
≤ ε,

the numerator inside any of the integrals A·
·,1 can be expressed as a sum of at most

three terms of the form (Pnf1 − Pf1) + (Pnf2 − Pf2) + (Pnf3 − Pf3), for functions

f1, f2, f3 ∈ F(ε). Here, Pn is the empirical distribution of the random vectors

U1, . . . ,Un whereas P is their true distribution. In the case of the terms A
(m),2,±
i,1 , the

sum is multiplied by a logarithmic term. In this case, all the integrals A·
·,1 are upper

bounded, in absolute value, by

3(log(n/k) + log(1/a))2 sup
f∈F(ε)

|Pnf − Pf |.
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What we have established so far is that each such term A·
·,1 satisfies, for any t > 0,

P
(
|A·

·,1| ≥ t
)
≤ P

(
3(log(n/k) + log(1/a))2 sup

f∈F(ε)

|Pnf − Pf | ≥ t
)

+ P
(
max
i∈V

max
{

sup
a≤x≤1

|u(i)n (x)− x|, sup
1≤x≤n/k

|u(i)n (x)− x|
x1−ν

}
> ε
)
.

For any triple (i, j,m), Fijm(ε) clearly admits the constant envelope function of

the form n/k. Moreover it is a VC-subgraph class that satisfies (3.92) with universal

constants A and V (see for instance van der Vaart and Wellner (1996), Theorem 2.6.7).

Moreover, the variance of any single function f in Fijm(ε) is bounded by

Pf 2 ≤
(n
k

)2
max

{
sup
a≤x≤1

P
(
Ui ∈

k

n
[x− ε, x+ ε]

)
,

sup
1≤x≤n/k

P
(
Ui ∈

k

n
[x− x1−νε, x+ x1−νε], Um ≤ k

n

)}
≤ n

k

{
2ε ∨ sup

1≤x≤n/k
Rim,n([x− x1−νε, x+ x1−νε], 1)

}
≤ n

k

{
2ε+ sup

1≤x≤n/k
Rim([x− x1−νε, x+ x1−νε], 1) + 2K

(k
n

)ξ}
≲
n

k

{
ε+

(k
n

)ξ}
where the last two inequalities follow from (3.57) and Lemma 3.9, respectively. By

(3.93) we therefore have

E
[

sup
f∈Fijm(ε)

|Pnf − Pf |
]
≲ k−1/2

(
(k/n)ξ + ε

)1/2
log
(
(n/k)1/2

(
(k/n)ξ + ε

)−1/2)1/2
+ k−1 log

(
(n/k)1/2

(
(k/n)ξ + ε

)−1/2)
≲
( log(n/k)

k

)1/2(
(k/n)ξ + ε

)1/2
+

log(n/k)

k
.

It follows from (3.94) that there exists a constant c such that for each triple (i, j,m)

and each λ > 0,

P
(

sup
f∈Fijm(ε)

|Pnf − Pf | ≥ c
{( log(n/k)

k

)1/2(
(k/n)ξ + ε

)1/2
+

log(n/k)

k

+
λ√
k

(
(k/n)ξ + ε

)1/2
+
λ2

k

})
≤ e−λ

2

.
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Combined with the union bound, this completes the proof.

Sums of iid processes

We now deal with the terms A·
·,2 involving integrated empirical processes, such as in

(3.62). In this section, we show that there exists a positive constant c2 such that for

all λ > 0,

P
(
max

∣∣A·
·,2
∣∣ > (1 + (k

n

)ξ
(log(n/k))2(log(n/k) + log(1/a))2

)1/2 λ√
k

+ (log(n/k) + log(1/a))2
λ2

k

)
≤ 16d3e−c2λ

2/2.

Starting with A
(m),−−
ij,2 , we have by definition of Gijm,n

A
(m),−−
ij,2 =

∫ 1

a

∫ 1

a

Gijm,n(x, y, 1)

xy
dxdy =:

n∑
t=1

(
V

(m),−−
t,ijm − E

[
V

(m),−−
t,ijm

])
,

where V
(m),−−
t,ijm , 1 ≤ t ≤ n, are independent copies of the random variable

V
(m),−−
ijm :=

1

k

∫ 1

a

∫ 1

a

1
{
Ui ≤ k

n
x, Uj ≤ k

n
y, Um ≤ k

n

}
xy

dxdy

=
1

k
log
( k

nUi
∧ a−1

)
log
( k

nUj
∧ a−1

)
1

{
Ui ≤

k

n
, Uj ≤

k

n
, Um ≤ k

n

}
.

Recall that by assumption a < 1. We may then write

V
(m),−−
ijm =

1

k
log(Wi) log(Wj)1 {Wi,Wj > 1} ,

with

Wi :=
( k

nUi
∧ a−1

)1{Um≤ k
n}

and Wj defined the same way. We easily notice that 0 ≤ V
(m),−−
ijm ≤ (log(1/a))2/k.

Moreover, an application of Lemma 3.6 (particularly (3.83)) gives

Var
(
V

(m),−−
ijm

)
≤ E

[(
V

(m),−−
ijm

)2]
=

4

k2

∫ 1

a

∫ 1

a

k
n
Rijm,n(x, y, 1)|(log x)(log y)|

xy
dxdy

≤ 4

kn

∫ 1

0

∫ 1

0

|(log x)(log y)|
√
xy

dxdy
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=
64

kn
,

where we used once again that Rijm,n(x, y, 1) ≤ x ∧ y ≤ √
xy, along with the formula∫ 1

0
log(x)/

√
x dx = −4. We may therefore apply Bernstein’s inequality for bounded

random variables (van der Vaart and Wellner, 1996, Lemma 2.2.9) with v = 64/k,

M = (log(1/a))2/k, which yields

P
(∣∣A(m),−−

ij,2

∣∣ > λ
)
≤ 2 exp

{
− kλ2

2(64 + λ(log(1/a))2/3)

}
.

Now considering A
(m),+−
ij,2 , we use the same approach and see that

A
(m),+−
ij,2 =

n∑
t=1

(
V

(m),+−
t,ijm − E

[
V

(m),+−
t,ijm

])
,

where

V
(m),+−
ijm = −1

k
log(Wi) log(Wj)1 {Wi < 1,Wj > 1}

and Wi, Wj are as before. This time, 0 ≤ V
(m),+−
ijm ≤ (log(n/k)) log(1/a)/k. An

application of Lemma 3.6 (this time, (3.84)) gives

Var
(
V

(m),+−
ijm

)
≤ E

[(
V

(m),+−
ijm

)2]
=

4

k2

∫ 1

a

∫ n/k

1

k
n
Rijm,n([x,∞), y, 1)|(log x)(log y)|

xy
dxdy

≤ 4

kn

∫ 1

a

∫ n/k

1

(
Rijm([x,∞), y, 1) + 3K(k/n)ξ

)
|(log x)(log y)|

xy
dxdy,

by (3.57) and (3.58). By (3.59), Rijm([x,∞), y, 1) ≤ Rim([x,∞), 1) ∧ Rjm(y, 1) ≤
Kx−ξ ∧ y ≤ Kx−ξ/2y1/2. The integral above is thus bounded by

K

∫ 1

0

∫ ∞

1

(log x)(− log y)

x1+ξ/2y1/2
dxdy + 3K

(k
n

)ξ ∫ 1

a

∫ n/k

1

(log x)(− log y)

xy
dxdy

≤ 16K

ξ2
+ 3K

(k
n

)ξ
(log(n/k))2(log(1/a))2 ≤ C2

(
1 +

(k
n

)ξ
(log(n/k))2(log(1/a))2

)
,

for a suitably chosen constant C2 depending on K and ξ only. Bernstein’s inequality,

with

v =
4C2

k

(
1 +

(k
n

)ξ
(log(n/k))2(log(1/a))2

)
and M = (log(n/k)) log(1/a)/k, therefore implies that for a positive constant c2
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depending on C2 only,

P
(∣∣A(m),+−

ij,2

∣∣ > λ
)

≤ 2 exp
{
− c2

kλ2

1 + (k/n)ξ(log(n/k))2(log(1/a))2 + λ(log(n/k)) log(1/a)

}
.

By symmetry, A
(m),−+
ij,2 admits the same bound.

As for A
(m),++
ij,2 , we write it as

A
(m),++
ij,2 =

n∑
t=1

(
V

(m),++
t,ijm − E

[
V

(m),++
t,ijm

])
,

where

V
(m),++
ijm =

1

k
log(Wi) log(Wj)1 {Wi,Wj < 1}

and Wi, Wj are as before. Again, 0 ≤ V
(m),++
ijm ≤ (log(n/k))2/k. An application of

Lemma 3.6 (this time, (3.85)) gives

Var
(
V

(m),++
ijm

)
≤ E

[(
V

(m),++
ijm

)2]
=

4

k2

∫ n/k

1

∫ n/k

1

k
n
Rijm,n([x,∞), [y,∞), 1)(log x)(log y)

xy
dxdy

≤ 4

kn

∫ n/k

1

∫ n/k

1

(
Rijm([x,∞), [y,∞), 1) + 5K(k/n)ξ

)
(log x)(log y)

xy
dxdy,

by (3.57) and (3.58). By (3.59), Rijm([x,∞), [y,∞), 1) ≤ Rim([x,∞), 1)∧Rjm([y,∞), 1) ≤
Kx−ξ ∧Ky−ξ ≤ Kx−ξ/2y−ξ/2. The integral above is thus bounded by

K

∫ ∞

1

∫ ∞

1

(log x)(log y)

(xy)1+ξ/2
dxdy + 5K

(k
n

)ξ ∫ n/k

1

∫ n/k

1

(log x)(log y)

xy
dxdy

≤ 16K

ξ4
+ 5K

(k
n

)ξ
(log(n/k))4 ≤ C2

(
1 +

(k
n

)ξ
(log(n/k))4

)
,

after possibly enlarging the constant C2. Hence by a similar application of Bernstein’s

inequality for bounded random variables as before,

P
(∣∣A(m),++

ij,2

∣∣ > λ
)
≤ 2 exp

{
− c2

kλ2

1 + (k/n)ξ(log(n/k))4 + λ(log(n/k))2

}
,

after possibly decreasing the (still positive) constant c2.

Finally, the terms A
(m),ℓ,−
i,2 , A

(m),ℓ,+
i,2 , A

(m),−−
im,2 and A

(m),+−
im,2 can be shown to satisfy

similar tail bounds by the same strategy, using (3.81) and (3.82) instead of (3.83)

to (3.85) for A
(m),ℓ,−
i,2 and A

(m),ℓ,+
i,2 .
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The conclusion of this section is that the positive constant c2 can be chosen

sufficiently small (only depending on K and ξ) such that for each term A·
·,2 and for

all λ > 0, P
(∣∣A·

·,2
∣∣ > λ

)
is bounded above by

2 exp

{
− c2

kλ2

1 + (k/n)ξ(log(n/k))2(log(n/k) + log(1/a))2 + λ(log(n/k) + log(1/a))2

}
.

The denominator in the exponential above is clearly upper bounded by

2max
{
1 + (k/n)ξ(log(n/k))2(log(n/k) + log(1/a))2, λ(log(n/k) + log(1/a))2

}
,

so the whole exponential is upper bounded by

max

{
2 exp

{
− c2

kλ2

2(1 + (k/n)ξ(log(n/k))2(log(n/k) + log(1/a))2)

}
,

2 exp

{
− c2

kλ

2(log(n/k) + log(1/a))2

}
.

Deduce that at least one of

P
(∣∣A·

·,2
∣∣ > (1 + (k

n

)ξ
(log(n/k))2(log(n/k) + log(1/a))2

)1/2 λ√
k

)
≤ 2e−c2λ

2/2

or

P
(∣∣A·

·,2
∣∣ > (log(n/k) + log(1/a))2

λ2

k

)
≤ 2e−c2λ

2/2

holds. Therefore

P
(∣∣A·

·,2
∣∣ > (1 + (k

n

)ξ
(log(n/k))2(log(n/k) + log(1/a))2

)1/2 λ√
k

+ (log(n/k) + log(1/a))2
λ2

k

)
≤ 2e−c2λ

2/2,

and a union bound allows to conclude.

Increments of rescaled copulae

It remains to bound the terms A·
·,3, corresponding to increments of the measures

RJ,n when the rescaled quantile functions u
(i)
n are applied to their arguments. In this

section, we prove that under Assumption 3.1, there exists a constant C3 such that for

any λ, τ > 0,

P
(
max

∣∣A·
·,3
∣∣ > 3τ(log(n/k) + log(1/a))2
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+ C3(log(n/k) + log(1/a))2
(Ã+ λ√

k
+
(k
n

)ξ))
≤ P

(
max
i

∆̃(i)
n (a, ν) >

Ã+ λ√
k

)
+ P

(
max
i

sup
x∈[0,n/k]

|u(i)n (x)− w(i)
n (x)| > τ

)
+ P

(
max
i

sup
a≤x≤n/k

|w(i)
n (x)− x|

x
> 1/2

)
,

where the constant Ã is as in Lemma 3.1. Moreover, if Assumption 3.2 is also satisfied,

C3 can be modified in a way that only depends on ε and K(β) and such that the

slightly larger probability

P
(
max

∣∣A·
·,3
∣∣ > 3τ(log(n/k)+log(1/a))2+C3

(Ã+ λ√
k

+
(k
n

)ξ
(log(n/k)+log(1/a))2

))
admits the same upper bound.

By Assumption 3.1, the measure RJ,n in any integrand can be replaced by RJ at

the cost of adding a deterministic error of the order of (k/n)ξ. After being integrated,

such an error is of order at most (k/n)ξ(log(n/k) + log(1/a))2. We will use this fact

on multiple occasions by bounding the increments of RJ instead of RJ,n.

Next we observe that by Lipschitz continuity of RJ,n the quantities u
(i)
n (x), u

(j)
n (y),

and u
(m)
n (1) appearing in the arguments of RJ inside A·

·,3 can be replaced by w
(i)
n (x),

w
(j)
n (y), and w

(m)
n (1) with an error that is controlled by Lemma 3.1, uniformly over

x, y, i, j,m. For example

max
i,j,m

sup
x,y∈[0,n/k]

∣∣∣Rijm,n(u
(i)
n (x), u(j)n (y), u(m)

n (1))−Rijm,n(w
(i)
n (x), w(j)

n (y), w(m)
n (1))

∣∣∣
≤ 3max

i
sup

x∈[0,n/k]
|u(i)n (x)− w(i)

n (x)|.

Define

Ã
(m),−−
ij,3 :=

∫ 1

a

∫ 1

a

|Rijm,n(w
(i)
n (x), w

(j)
n (y), w

(m)
n (1))−Rijm,n(x, y, 1)|

xy
dxdy,

and similarly define other terms Ã·
·,3 replacing the different A·

·,3. The difference

between those quantities and the original A·
·,3 terms that they replace can be uniformly

controlled as

max
∣∣A·

·,3 − Ã·
·,3
∣∣ ≤ 3(log(n/k) + log(1/a))2max

i
sup

x∈[0,n/k]
|u(i)n (x)− w(i)

n (x)|,
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some of those bounds using the fact that∫
(log x)ℓ−1

x
dx =

(log x)ℓ

ℓ
+ constant. (3.66)

We then obtain that for all τ > 0,

P
(
max

∣∣A·
·,3 − Ã·

·,3
∣∣ > 3τ(log(n/k) + log(1/a))2

)
≤ P

(
max
i

sup
x∈[0,n/k]

|u(i)n (x)− w(i)
n (x)| > τ

)
.

Hence it remains to bound the terms Ã·
·,3 which are defined in the same way as A·

·,3

but with w
(i)
n (x), w

(j)
n (y), w

(m)
n (1) replacing u

(i)
n (x), u

(j)
n (y), u

(m)
n (1).

Note that whenever

max
i

sup
a≤x≤n/k

|w(i)
n (x)− x|

x
≤ 1/2,

we have for all i and x ∈ [a, n/k] that x/2 ≤ u
(i)
n (x) ≤ 2x. We will assume, for the

remainder of the section, that this is realized. Lemma 3.2 allows to lower bound the

probability of that event.

Finally, recall the quantities

∆̃(i)
n (a, ν) = max

{
sup
x∈[a,1]

|w(i)
n (x)− x|
xν

, sup
x∈[1,n/k]

|w(i)
n (x)− x|
x1−ν

}
from the discussion after Lemma 3.1.

The general case. We first prove the weaker bound that does not rely on Assump-

tion 3.2.

Firstly, for x, y ∈ [a, 1] and every triple (i, j,m),

Rijm,n(w
(i)
n (x), w(j)

n (y), w(m)
n (1))−Rijm,n(x, y, 1)

= Rijm,n(w
(i)
n (x), w(j)

n (y), w(m)
n (1))−Rijm,n(w

(i)
n (x), w(j)

n (y), 1)

+Rijm,n(w
(i)
n (x), w(j)

n (y), 1)−Rijm,n(w
(i)
n (x), y, 1)

+Rijm,n(w
(i)
n (x), y, 1)−Rijm,n(x, y, 1). (3.67)

Each of the three differences above, by Lipschitz continuity of Rij,m, is of course
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bounded by maxi ∆̃
(i)
n (a, 0) ≤ maxi ∆̃

(i)
n (a, ν), for arbitrary 1/2 > ν > 0. Deduce that

∣∣Ã(m),−−
ij,3

∣∣ ≤ ∫ 1

a

∫ 1

a

|Rijm,n(w
(i)
n (x), w

(j)
n (y), w

(m)
n (1))−Rijm,n(x, y, 1)|

xy
dxdy

≤ (log(1/a))2max
i

∆̃(i)
n (0, ν).

The term Ã
(m),−−
im,3 is bounded using the same strategy, following an expansion similar

to (3.67) but without the first term. As for the term Ã
(m),ℓ,−
i,3 , it is also bounded after

an expansion similar to the third term in (3.67), using the indefinite integral (3.66).

Secondly, for all x ∈ [1, n/k], y ∈ [a, 1] and every triple (i, j,m),

Rijm,n([w
(i)
n (x),∞), w(j)

n (y), w(m)
n (1))−Rijm,n([x,∞), y, 1)

= Rijm,n([w
(i)
n (x),∞), w(j)

n (y), w(m)
n (1))−Rijm,n([w

(i)
n (x),∞), w(j)

n (y), 1)

+Rijm,n([w
(i)
n (x),∞), w(j)

n (y), 1)−Rijm,n([w
(i)
n (x),∞), y, 1)

+Rijm,n([w
(i)
n (x),∞), y, 1)−Rijm,n([x,∞), y, 1). (3.68)

The first two differences are again uniformly bounded by maxi ∆̃
(i)
n (a, ν) by Lipshitz

continuity. As for the third difference in (3.68), let us replace Rijm,n by Rijm as

described at the beginning of this section. We are then left with

Rijm([x ∧ w(i)
n (x), x ∨ w(i)

n (x)), y, 1) ≤ y
|w(i)

n (x)− x|
x ∧ w(i)

n (x)
≤ 2x−νymax

i
∆̃(i)
n (a, ν), (3.69)

by Lemma 3.9 and the fact that we are on the event w
(i)
n (x) ≥ x/2. Deduce that

∣∣Ã(m),+−
ij,3

∣∣ ≤ ∫ n/k

1

∫ 1

a

|Rijm,n([w
(i)
n (x),∞), w

(j)
n (y), w

(m)
n (1))−Rijm,n([x,∞), y, 1)|

xy
dxdy

≲ (log(n/k))(log(1/a))max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k))(log(1/a)),

where the last term comes from the approximation of Rijm,n by Rijm. By symmetry,

A
(m),−+
ij,3 enjoys the same bound. Moreover, A

(m),+−
im,3 is bounded using the same strategy,

following an expansion similar to (3.68) but without the first term. As for the term

A
(m),ℓ,+
i,3 , it is also bounded after an expansion similar to the third term in (3.68), using

(3.66).

Thirdly, for all x, y ∈ [1, n/k] and every triple (i, j,m),

Rijm,n([w
(i)
n (x),∞), [w(j)

n (y),∞), w(m)
n (1))−Rijm,n([x,∞), [y,∞), 1)

= Rijm,n([w
(i)
n (x),∞), [w(j)

n (y),∞), w(m)
n (1))−Rijm,n([w

(i)
n (x),∞), [w(j)

n (y),∞), 1)
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+Rijm,n([w
(i)
n (x),∞), [w(j)

n (y),∞), 1)−Rijm,n([w
(i)
n (x),∞), [y,∞), 1)

+Rijm,n([w
(i)
n (x),∞), [y,∞), 1)−Rijm,n([x,∞), [y,∞), 1). (3.70)

The first difference is upper bounded similarly to before by using the Lipschitz

continuity of Rijm,n. As for the second term, we once again replace Rijm,n by its limit

Rijm and obtain

Rijm([w
(i)
n (x),∞), [y ∧ w(j)

n (y), y ∨ w(j)
n (y)), 1) ≤ Rjm([y ∧ w(j)

n (y), y ∨ w(j)
n (y)), 1)

≤ |w(j)
n (y)− y|

y ∧ w(j)
n (y)

≤ 2y−ν max
i

∆̃(i)
n (a, ν).

(3.71)

The third term of (3.70) admits the same bound with x replacing y. Deduce that∣∣Ã(m),++
ij,3

∣∣ is bounded above by∫ n/k

1

∫ n/k

1

|Rijm,n([w
(i)
n (x),∞), [w

(j)
n (y),∞), w

(m)
n (1))−Rijm,n([x,∞), [y,∞), 1)|

xy
dxdy

≲ (log(n/k))2max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k))2,

the last term again appearing by replacing Rijm,n by Rijm.

We have therefore proved that, for any 1/2 > ν > 0, each term A·
·,3 is upper

bounded by a constant multiple of

(log(n/k) + log(1/a))2max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k) + log(1/a))2.

Assuming bounded densities. Let us now suppose that Assumption 3.2 is satisfied

with a certain ε ∈ (0, 4). While in the general case above ν ∈ (0, 1/2) was arbitrary,

let now ν = 1/2− ε/8.

The various bounds above on the numerators in the integrals Ã·
·,3 were for the most

part uniform in the integrands x and y. By integrating them over a growing domain,

a polylogarithmic factor was paid. We shall now derive more subtle bounds that are

proportional to functions f(x, y) such that f(x, y)/xy is integrable over the infinite

domain, thus allowing us to remove the extra polylogarithmic factors.

Firstly, for x, y ∈ [a, 1], consider the three terms in (3.67) and in each one, replace

Rijm,n by Rijm. By Lemma 3.10 with β = ν/2, the third term is then bounded by

Rij([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], y) ≲ yν/2
|w(i)

n (x)− x|
xν/2

≤ (xy)ν/2max
i

∆̃(i)
n (a, ν).
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The second term admits the same bound up to a factor of 2ν/2, since by assumption

w
(i)
n (x) ≤ 2x. As for the first term, now using Lemma 3.10 with β = ν, it is upper

bounded by both

Rim(2x, [1 ∧ w(m)
n (1), 1 ∨ w(m)

n (1)]) ≲ xν max
i

∆̃(i)
n (a, ν)

and

Rjm(2y, [1 ∧ w(m)
n (1), 1 ∨ w(m)

n (1)]) ≲ yν max
i

∆̃(i)
n (a, ν),

hence by

(xy)ν/2max
i

∆̃(i)
n (a, ν)

up to a constant. It then follows that

∣∣Ã(m),−−
ij,3

∣∣ ≲ max
i

∆̃(i)
n (a, ν)

∫ 1

0

∫ 1

0

(xy)ν/2−1dxdy +
(k
n

)ξ
(log(1/a))2

≲ max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(1/a))2.

The bounds on A
(m),−−
im,3 and A

(m),ℓ,−
i,3 follow from the same argument, noting for the

latter that ∫ 1

0

(log x)ℓ−1

x1−ν/2
dx <∞.

Secondly, for x ∈ [1, n/k], y ∈ [a, 1] and every triple (i, j,m), consider the three

terms in (3.68) and in each one, replace Rijm,n by Rijm. It was already proved in the

general case that by Lemma 3.9, the third term satisfies (see (3.69))

Rijm([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], y, 1) ≤ Rij([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], y)

≤ 2x−νymax
i

∆̃(i)
n (a, ν).

The second term, by an application of Lemma 3.11 with β = −ε, is upper bounded by

Rij([w
(i)
n (x),∞), [y ∧ w(j)

n (y), y ∨ w(j)
n (y)]) ≲ w(i)

n (x)−ε(y ∨ w(j)
n (y))ε|w(j)

n (y)− y|

≲ x−εyε+ν max
i

∆̃(i)
n (a, ν).

The first term of (3.68) is upper bounded by both

Rjm(w
(j)
n (y), [1 ∧ w(m)

n (1), 1 ∨ w(m)
n (1)]) ≤ w(j)

n (y)|w(m)
n (1)− 1| ≲ ymax

i
∆̃(i)
n (a, ν),

by Lemma 3.10, and

Rim([w
(i)
n (x),∞), [1 ∧ w(m)

n (1), 1 ∨ w(m)
n (1)]) ≲ w(i)

n (x)−ε|w(m)
n (1)− 1|
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≲ x−εmax
i

∆̃(i)
n (a, ν),

again by Lemma 3.11 with β = −ε. Hence the first term is in fact bounded by

x−ε/2y1/2max
i

∆̃(i)
n (a, ν)

up to a constant. It then follows that

∣∣Ã(m),+−
ij,3

∣∣ ≲ max
i

∆̃(i)
n (a, ν)

∫ 1

0

∫ ∞

1

(
x−1−ν + x−1−εyε+ν−1 + x−1−ε/2y−1/2

)
dxdy

+
(k
n

)ξ
(log(n/k))(log(1/a))

≲ max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k))(log(1/a)).

The same holds for A
(m),−+
ij,3 by symmetry. The bounds on A

(m),+−
im,3 and A

(m),ℓ,+
i,3 follow

from the same argument, noting for the latter that∫ ∞

1

(log x)ℓ−1

x1+ζ
dx <∞

for any positive ζ.

Finally, for x, y ∈ [1, n/k] and every triple (i, j,m), consider the three terms in

(3.70) and in each one, replace Rijm,n by Rijm. By Lemma 3.10 with β = 1 + ε, the

third term of (3.70) satisfies

Rijm([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], [y,∞), 1) ≤ Rim([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], 1)

≲
|w(i)

n (x)− x|
x1+ε

≲ x−ν−εmax
i

∆̃(i)
n (a, ν)

but at the same time, Lemma 3.11 with β = −ε/2 yields

Rijm([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], [y,∞), 1) ≤ Rij([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], [y,∞))

≲ y−ε/2xε/2|w(i)
n (x)− x|

≲ x1−ν+ε/2y−ε/2max
i

∆̃(i)
n (a, ν).

The minimum between the bounds above being smaller than their geometric mean,

we then have

Rijm([x ∧ w(i)
n (x), x ∨ w(i)

n (x)], [y,∞), 1) ≲ x−ε/8y−ε/4max
i

∆̃(i)
n (a, ν),
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recalling that ν = 1/2− ε/8, so that (−ν − ε) + (1− ν + ε/2) = 1− 2ν − ε/2 = −ε/4.
The second term of (3.70) admits a similar bound since by assumption w

(i)
n (x) ≥ x/2.

As for the first term, by Lemma 3.11 with β = −ε it is bounded by

Rim([x/2,∞), [1 ∧ w(m)
n (1), 1 ∨ w(m)

n (1)]) ≤ x−ε|w(m)
n (1)− 1| ≲ x−εmax

i
∆̃(i)
n (a, ν),

but also by

Rjm([y/2,∞), [1 ∧ w(m)
n (1), 1 ∨ w(m)

n (1)]) ≤ y−ε|w(m)
n (1)− 1| ≲ y−εmax

i
∆̃(i)
n (a, ν),

hence by

(xy)−ε/2max
i

∆̃(i)
n (a, ν)

up to a constant. It then follows that∣∣Ã(m),++
ij,3

∣∣ ≲ max
i

∆̃(i)
n (a, ν)

∫ ∞

1

∫ ∞

1

(
x−1−ε/8y−1−ε/4 + (xy)−1−ε/2)dxdy

+
(k
n

)ξ
(log(n/k))2

≲ max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k))2.

We have therefore proved that each term A·
·,3 is upper bounded, up to a constant, by

max
i

∆̃(i)
n (a, ν) +

(k
n

)ξ
(log(n/k) + log(1/a))2.

□

3.11.4 Proof of Theorem 3.3

As per the statement of the theorem, pick an arbitrary ζ ∈ (0, 1) and assume that

k ≥ nζ . Since the statement is trivial for λ < 1 (with the right choice of constants),

suppose that 1 ≤ λ ≤
√
k/(log n)4. Moreover let a satisfy

max
{λ2 log n

k
,
(k
n

)ξ}
≤ a ≤ max

{ λ√
k log n

,
(k
n

)ξ}
. (3.72)

Note that by our choice of λ, the interval above is always non-empty. Introduce the

notation ln,a := log(n/k)+ log(1/a) and note that by (3.72), ln,a ≲ log(n/k). Consider

the results of Section 3.11.3 with

ε := Â
( 1√

k
+

log n

k

)
+

λ√
k
+
λ2

k
≲

λ√
k
≤ 1

(log n)4
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and

τ :=
A log n+ λ2

k
,

for Â and A as in Corollary 3.1 and Lemma 3.1, respectively. Combining these results

with those of Section 3.11.2, we obtain the following simultaneous upper bound on

each integral I ·
· in (3.54) to (3.56):

C1l
2
n,a

{( log(n/k)
k

)1/2((k
n

)ξ
+ ε
)1/2

+
log(n/k)

k
+

λ√
k

((k
n

)ξ
+ ε
)1/2

+
λ2

k

}
+
(
1 +

(k
n

)ξ
(log(n/k))2l2n,a

)1/2 λ√
k
+ l2n,a

λ2

k

+ 3τ l2n,a + C3l
2
n,a

(Ã+ λ√
k

+
(k
n

)ξ)
+O

((k
n

)ξ
l2n,a

)
. (3.73)

Note that (k/n)ξ(log(n/k))2l2n,a ≲ (k/n)ξ(log(n/k))4 can be upper bounded by a

constant only depending on ξ. Using this and the fact that (x+ y)1/2 ≤ x1/2 + y1/2

for x, y ≥ 0, we find

l2n,a

( log(n/k)
k

)1/2((k
n

)ξ
+ ε
)1/2
≲ l2n,a

(k
n

)ξ/2( log(n/k)
k

)1/2
+ l2n,a

( log(n/k)
k

)1/2
ε1/2

≲
1√
k
+ l2n,a

( log(n/k)
k

)1/2
λ1/2k−1/4 ≲

λ√
k

since (log n)5/2 ≲ k1/4. By similar arguments using that ε ≲ 1/(log n)4,

l2n,a

((k
n

)ξ
+ ε
)1/2
≲ 1.

Moreover,

τ l2n,a ≲
(log n)3

k
+ l2n,a

λ2

k
.

In addition, notice that by our choice of λ,

λ2

k
≤ l2n,a

λ2

k
≲
λ(log n)−2

√
k

k
≤ λ√

k

and that since k ≥ nζ ,
(log n)3

k
≲

1√
k
.
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Piecing those results together, (3.73) can be bounded by

C ′
{(k

n

)ξ
(log(n/k))2 +

(log(n/k))2(1 + λ)√
k

}
, (3.74)

for the right constant C ′. If Assumption 3.2 is made, the same strategy yields the

sharper bound

C1l
2
n,a

{( log(n/k)
k

)1/2((k
n

)ξ
+ ε
)1/2

+
log(n/k)

k
+

λ√
k

((k
n

)ξ
+ ε
)1/2

+
λ2

k

}
+
(
1 +

(k
n

)ξ
(log(n/k))2l2n,a

)1/2 λ√
k
+ l2n,a

λ2

k

+ 3τ l2n,a + C3

(Ã+ λ√
k

+
(k
n

)ξ
l2n,a

)
+O

((k
n

)ξ
l2n,a

)
≤ C̄ ′

{(k
n

)ξ
(log(n/k))2 +

1 + λ√
k

}
, (3.75)

for the right constant C̄ ′. It is left to control the deterministic error terms in (3.54)

to (3.56) arising from the truncation of the integrals. Those terms are upper bounded

by a constant multiple of(k
n

)ξ
(log(n/k)) + l2n,ak

−1 + aln,a

≲
(k
n

)ξ
(log(n/k)) +

1√
k
+max

{ λ√
k
,
(k
n

)ξ
(log(n/k))

}
≲
(k
n

)ξ
(log(n/k)) +

1 + λ√
k

so they are absorbed into the bounds above. Note that this time we have used the

upper bound on a in (3.72) in order to bound aln,a.

The probability that each of the two bounds in (3.74) and (3.75) holds is at least

1− d3e−λ
2 − P

(
max
i∈V

∆̂(i)
n (a, 0, ν) > Â

( 1√
k
+

log n

k

)
+

λ√
k
+
λ2

k

)
− 16d3e−c2λ

2/2

− P
(
max
i

∆̃(i)
n (a, ν) >

Ã+ λ√
k

)
− P

(
max
i

sup
x∈[0,n/k]

|u(i)n (x)− w(i)
n (x)| > A log n+ λ2

k

)
− P

(
max
i

sup
a≤x≤n/k

|w(i)
n (x)− x|

x
> 1/2

)
≥ 1− d3e−λ

2 − B̂de−Ĉλ
2 − 16d3e−c2λ

2/2 − B̃de−C̃λ
2 −Bde−Cλ

2
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− 6d exp
{
− c′k

(
1 ∧ a

log log(1/a)

)}
≥ 1−Md3 exp

{
− cmin

{
λ2,

ka

log log(1/a)

}}
,

for suitable constants M and c, where we have used Corollary 3.1 and Lemmas 3.1

and 3.2. By (3.72), since a ≥ λ2(log n)/k, we find

ka

log log(1/a)
≥ λ2 log n

log log k
≥ λ2,

so that the probability above is equal to

1−Md3e−cλ
2

.

Combining this with (3.51) and (3.54) to (3.56) finally concludes the proof, upon

noting that the factor e
(m),1
i − e

(m),1
j appearing in (3.51) is upper bounded by 1 +K/ξ

(see the proof of Lemma 3.8) and properly choosing the constants C and C̄ in terms

of C ′ and C̄ ′. □

3.12 Auxiliary results and proofs

3.12.1 Proof of Proposition 3.1

We first show that (3.16) is sufficient for Assumptions 3.3 and 3.4, and subsequently

prove the converse which turns out to be more involved.

Assumption 3.1 implies Assumptions 3.3 and 3.4: Assume that (3.16) holds for

all q ∈ (0, 1] and all sets J ⊂ V of size 3. We then have, for any i, j,m,

Rim(q
−1, 1) = Rijm(q

−1,∞, 1)

≥ Rijm(q
−1, q−1, 1)

≥ q−1P(Fi(Xi) > 0, Fj(Xj) > 0, Fm(Xm) > 1− q)−Kqξ

= 1−Kqξ,

since the marginal distribution of Fm(Xm) is uniform on (0, 1). Thus (3.21) holds

with KT = K, ξT = ξ.

Now, that (3.20) follows from (3.16) when |J | = 3 is trivial. For the case where J

is a pair, say (i,m), let x ≤ q−1, z ≤ 1. We have∣∣∣q−1P
(
Fi(Xi) > 1− qx, Fm(Xm) > 1− qz

)
−Rim(x, z)

∣∣∣
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=
∣∣∣q−1P

(
Fi(Xi) > 1− qx, Fj(Xj) > 1− qq−1, Fm(Xm) > 1− qz

)
−Rim(x, z)

∣∣∣
≤
∣∣∣Rijm(x, q

−1, z)−Rim(x, z)
∣∣∣+Kqξ

= Rijm([0, x], [q
−1,∞), [0, z]) +Kqξ, (3.76)

using (3.16) and the representation of Rijm as a non-negative measure. Then, (3.21)

implies that the first term above is upper bounded by Rjm([q
−1,∞), 1) ≤ Kqξ. Hence

for pairs J , (3.20) (in fact, a stronger version thereof where one component of x is

allowed to grow) holds with K ′ = 2K, ξ′ = ξ.

Assumptions 3.3 and 3.4 imply Assumption 3.1: Assume that (3.20) and (3.21)

hold for all q ∈ (0, 1] and all pairs and triples J ⊂ V of indices. As in the statement

of the result, let ξ := ξ′ξT/(1 + ξ′ + ξT ). Let

ψ :=
ξ′

1 + ξ′ + ξT
∈ (0, 1),

and note that both −ψ + (1− ψ)ξ′ and ψξT are equal to ξ.

We wish to bound∣∣∣q−1P(Fi(Xi) > 1− qx, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)−Rijm(x, y, z)
∣∣∣ (3.77)

uniformly over all x, y ∈ [0, q−1], z ∈ [0, 1]. Let us divide the square [0, q−1]2 of possible

values of (x, y) into four quadrants defined by the axes x = q−ψ and y = q−ψ. First,

for all x, y, z ≤ q−ψ,∣∣∣q−1P(Fi(Xi) > 1− qx, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)−Rijm(x, y, z)
∣∣∣

=
∣∣∣q−1P(Fi(Xi) > 1− q1−ψqψx, Fj(Xj) > 1− q1−ψqψy, Fm(Xm) > 1− q1−ψqψz)

− q−ψRijm(q
ψx, qψy, qψz)

∣∣∣
= q−ψ

∣∣∣qψ−1P(Fi(Xi) > 1− q1−ψqψx, Fj(Xj) > 1− q1−ψqψy, Fm(Xm) > 1− q1−ψqψz)

−Rijm(q
ψx, qψy, qψz)

∣∣∣
≤ K ′q−ψ+(1−ψ)ξ′ = K ′qξ, (3.78)

where we applied (3.20) with q replaced by q1−ψ, since qψ(x, y, z) ∈ [0, 1]3. This

bounds (3.77) for x, y ≤ q−ψ.

Second, for q−ψ ≤ x, y ≤ q−1, z ≤ 1,

z ≥ Rijm(x, y, z) = zRijm(x/z, y/z, 1) ≥ zRijm(q
−ψ, q−ψ, 1)

= zRijm([0, q
−ψ]× [0, q−ψ]× [0, 1])
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≥ z(Rim([0, q
−ψ], [0, 1]) +Rjm([0, q

−ψ], [0, 1])− 1)

≥ z
(
1− 2KT (q

ψ)ξT
)

≥ z − 2KT q
ξ, (3.79)

using (3.21) to lower bound Rim and Rjm. Similarly,

z ≥ q−1P(Fi(Xi) > 1− qx, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)

≥ q−1P(Fi(Xi) > 1− qq−ψ, Fj(Xj) > 1− qq−ψ, Fm(Xm) > 1− qz)

≥ Rijm(q
−ψ, q−ψ, z)−K ′qξ

= zRijm(q
−ψ/z, q−ψ/z, 1)−K ′qξ

≥ zRijm(q
−ψ, q−ψ, 1)−K ′qξ,

where the third inequality follows from (3.78). Using the developments leading to

(3.79), this lower bound is itself lower bounded by

z − (K ′ + 2KT )q
ξ.

Deduce that (3.77) is bounded by (K ′ + 2KT )q
ξ for q−ψ ≤ x, y ≤ q−1.

Third, let q−ψ ≤ x ≤ q−1, y ≤ q−ψ, z ≤ 1; the case where q−ψ ≤ y ≤ q−1 and

x ≤ q−ψ is handled symmetrically. We will again sandwich the two terms in (3.77).

We first have

Rjm(y, z) ≥ Rijm(x, y, z)

≥ Rijm(q
−ψ, y, z)

= Rjm(y, z)− (Rjm(y, z)−Rijm(q
−ψ, y, z))

≥ Rjm(y, z)− (z −Rim(q
−ψ, z))

≥ Rjm(y, z)− (1−Rim(q
−ψ, 1))

≥ Rjm(y, z)−KT q
ξ,

where in the last step we use (3.21). The other term in (3.77) enjoys similar upper

and lower bounds: by (3.78) and by the preceding lower bound on Rijm(q
−ψ, y, z),

q−1P(Fi(Xi) > 1− qx, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)

≥ q−1P(Fi(Xi) > 1− qq−ψ, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)

≥ Rijm(q
−ψ, y, z)−K ′qξ

≥ Rjm(y, z)− (K ′ +KT )q
ξ.
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Meanwhile,

q−1P(Fi(Xi) > 1− qx, Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)

≤ q−1P(Fj(Xj) > 1− qy, Fm(Xm) > 1− qz)

≤ q−ψqψ−1P(Fj(Xj) > 1− q1−ψqψy, Fm(Xm) > 1− q1−ψqψz)

≤ q−ψ
(
Rjm(q

ψy, qψz) +K ′q(1−ψ)ξ
′)

= Rjm(y, z) +K ′qξ,

where we have used (3.20) with q replaced by q1−ψ, since qψ(y, z) ∈ [0, 1]2. Deduce

that (3.77) is bounded by (K ′+KT )q
ξ for y ≤ q−ψ ≤ x ≤ q−1 (and also for y ≤ q−ψ ≤

x ≤ q−1 by symmetry).

We have therefore established that for all x, y ≤ q−1, z ≤ 1, (3.77) is upper bounded

by (K ′ + 2KT )q
ξ, i.e., Assumption 3.1 is satisfied with the desired values K and ξ. □

3.12.2 Densities of Hüsler–Reiss Pareto distributions

Using the known expression for the stable tail dependence function of the bivariate

Hüsler–Reiss distribution, we now show that any such distribution satisfies Assump-

tions 3.2 and 3.4.

Lemma 3.3. Suppose that Y has a Hüsler–Reiss distribution with parameter matrix

Γ. For any distinct pair (i, j), as long as λ :=
√
Γij > 0, its bivariate R-function Rij

satisfies the following.

(i) For any positive ξ, there exists a finite constant Kξ (which also depends on λ)

such that

1−Rij(q
−1, 1) ≤ Kξq

ξ, q ∈ (0, 1].

(ii) The function Rij has density

rij(x, y) =
1

2
√
2πλ

√
xy

exp

{
−λ

2

2
− (log x− log y)2

8λ2

}
, (x, y) ∈ (0,∞)2.

For any β ∈ R, this density enjoys the upper bound

rij(x, y) ≤
K(β)

xβy1−β
, K(β) :=

exp{λ2(2(β − 1/2)2 − 1/2)}
2
√
2πλ

.

Proof. The pair (Yi, Yj) has a bivariate Hüsler–Reiss distribution with dependence
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parameter λ2, so its stable tail dependence function is

Lij(x, y) = xΦ

(
λ+

log x− log y

2λ

)
+ yΦ

(
λ+

log y − log x

2λ

)
,

so Rij is given by

Rij(x, y) = xΦc

(
λ+

log x− log y

2λ

)
+ yΦc

(
λ+

log y − log x

2λ

)
,

where Φc denotes the standard Gaussian survival function.

Proof of (i): Fix a number ξ > 0. First note that if q ≥ e−4λ2 , we trivially have that

1−Rij(q
−1, 1) ≤ 1 ≤ e4λ

2ξqξ,

so we shall assume without loss of generality that q ≤ e−4λ2 . This implies that

log q−1 ≥ 4λ2, or equivalently

log q−1

2λ
− λ ≥ log q−1

4λ
.

We then have

1−Rij(q
−1, 1) ≤ 1− Φc

(
λ+

log q

2λ

)
= Φc

(
log q−1

2λ
− λ

)
≤ Φc

(
log q−1

4λ

)
≤ 4λ√

2π log q−1
exp

{
− 1

32λ2
(
log q−1

)2}
,

the last inequality following from well known bounds on the Gaussian tails (Durrett,

2010, Theorem 1.2.3). This is in turn upper bounded by

1√
2πλ

q(log q
−1)/32λ2 ,

which is of smaller order than any power of q since the exponent diverges as q ↓ 0.

We can therefore upper bound it by any power qξ, up to a multiplicative constant

depending on both ξ and λ.

Proof of (ii): The density of Rij is defined as

rij(x, y) :=
∂2

∂x∂y
Rij(x, y) = − ∂2

∂x∂y
Lij(x, y).

First, we have

∂

∂x
xΦ

(
λ+

log x− log y

2λ

)
= Φ

(
λ+

log x− log y

2λ

)
+ xϕ

(
λ+

log x− log y

2λ

)
1

2λx
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= Φ

(
λ+

log x− log y

2λ

)
+

1

2λ
ϕ

(
λ+

log x− log y

2λ

)
,

so

∂2

∂x∂y
xΦ

(
λ+

log x− log y

2λ

)
= − 1

2λy
ϕ

(
λ+

log x− log y

2λ

)
− 1

4λ2y
ϕ′
(
λ+

log x− log y

2λ

)
= − 1

4λ2y

(
λ+

log y − log x

2λ

)
ϕ

(
λ+

log x− log y

2λ

)
,

where we used the expression ϕ′(t) = −tϕ(t) for the derivative of the standard Gaussian

density ϕ. Now by definition of ϕ, this is equal to

− 1

4
√
2πλ2y

(
λ+

log y − log x

2λ

)
exp

{
−λ

2

2
− (log x− log y)2

8λ2
+

log y − log x

2

}
= − 1

4
√
2πλ2

√
xy

(
λ+

log y − log x

2λ

)
exp

{
−λ

2

2
− (log x− log y)2

8λ2

}
.

Adding this to

∂2

∂x∂y
yΦ

(
λ+

log y − log x

2λ

)
= − 1

4
√
2πλ2

√
xy

(
λ+

log x− log y

2λ

)
exp

{
−λ

2

2
− (log x− log y)2

8λ2

}
,

obtained by a symmetric argument, yields the desired density. As for the upper bound,

note that for any β ∈ R,

rij(x, y) =
1

2
√
2πλxβ

√
y
exp

{
−λ

2

2
− (log x− log y)2

8λ2
+ (β − 1/2) log x

}
.

Writing u and v for log x and log y, the exponent above is

−λ
2

2
− (u− v)2

8λ2
+ (β − 1/2)u =

−u2

8λ2
+
(
(β − 1/2) +

v

4λ2

)
u− v2

8λ2

which is maximized (in u) at u = v + 4λ2(β − 1/2), hence

−λ
2

2
− (u− v)2

8λ2
+ (β − 1/2)u ≤ −λ

2

2
− 2λ2(β − 1/2)2 + (β − 1/2)v + 4λ2(β − 1/2)2

= (β − 1/2)v + λ2(2(β − 1/2)2 − 1/2).
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Conclude that

rij(x, y) ≤
1

2
√
2πλxβy1−β

exp{λ2(2(β − 1/2)2 − 1/2)}.

3.12.3 The moments e
(m),ℓ
m

Recalling that for any m, Y
(m)
m has a unit Pareto distribution, and thus that log Y

(m)
m

has a unit exponential distribution, it is evident that e
(m),1
m = 1 and e

(m),2
m = 2. As

for the empirical versions ê
(m),ℓ
m of those moments, they are in fact deterministic,

since the terms F̂m(Utm) appearing in the sum are exactly the k smallest such terms

{1/n, . . . , k/n}. Precisely, we have the following result.

Lemma 3.4. As long as k ≥ 3, we have

∣∣ê(m),1
m − 1

∣∣ ≤ 3 log k

k
,
∣∣ê(m),2
m − 2

∣∣ ≤ 8(log k)2

k
.

Proof. By definition, we have

ê(m),ℓ
m =

1

k

k∑
j=1

{log(k/j)}ℓ =

log k − 1
k

∑k
j=1 log j, ℓ = 1

(log k)2 − 2 log k
k

∑k
j=1 log j +

1
k

∑k
j=1(log j)

2, ℓ = 2
.

(3.80)

Note that

k∑
j=1

(log j)ℓ =
k∑
j=2

∫ j+1

j

(log j)ℓdt ∈
[ ∫ k

1

(log t)ℓdt,

∫ k+1

2

(log t)ℓdt

]
.

Evaluating those integrals yields

k{log k − 1}+ 1 ≤
k∑
j=1

log j ≤ (k + 1){log(k + 1)− 1} − 2(log 2− 1)

and

k
{
(log k)2 − 2 log k + 2

}
− 2 ≤

k∑
j=1

(log j)2

≤ (k + 1)
{
(log(k + 1))2 − 2 log(k + 1) + 2

}
− 2
{
(log 2)2 − 2 log 2 + 2

}
.

Denote by aℓ and bℓ the lower and upper bound on
∑k

j=1(log j)
ℓ above, ℓ ∈ {1, 2}. As
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long as k ≥ 3, we have by (3.80) and by simple computations

k
∣∣ê(m),1
m − 1

∣∣ ≤ |a1 − k log k + k| ∨ |b1 − k log k + k| ≤ 3 log k

and

k
∣∣ê(m),2
m − 2

∣∣ ≤ |a2 − 2(log k)b1 + k(log k)2 − 2k| ∨ |b2 − 2(log k)a1 + k(log k)2 − 2k|

≤ 8(log k)2,

which is the desired result.

3.12.4 Verifying the integral representations of different moments

We start by deriving general expressions for the moments of logarithms of random

vectors which will lead to proving the representations in (3.54) to (3.56). The following

result is a multivariate version of the so-called “Darth Vader rule”.

Lemma 3.5. Let X1, . . . , Xd be non-negative random variables and p1, . . . , pd > 0.

Then

E
[ d∏
j=1

X
pj
j

]
=

∫
[0,∞)d

d∏
j=1

pjx
pj−1
j P(X1 ≥ x1, . . . , Xd ≥ xd)dx1 . . . dxd.

Moreover, any number of “≥” can be replaced by “>”, as this changes the value of the

probability, at most, on a Lebesgue-null set.

Proof. Letting (Ω,F , P ) be the underlying probability space containing all the random

variables, we have

E
[ d∏
j=1

X
pj
j

]
=

∫
Ω

d∏
j=1

Xj(ω)
pjP (dω)

=

∫
Ω

∫
[0,X1(ω)p1 ]×···×[0,Xd(ω)

pd ]

du1 . . . dudP (dω)

=

∫
Ω

∫
[0,∞)d

1
{
X1(ω) ≥ u

1/p1
1 , . . . , Xd(ω) ≥ u

1/pd
d

}
du1 . . . dudP (dω)

=

∫
[0,∞)d

(∫
Ω

1
{
X1(ω) ≥ u

1/p1
1 , . . . , Xd(ω) ≥ u

1/pd
d

}
P (dω)

)
du1 . . . dud

=

∫
[0,∞)d

P
(
X1 ≥ u

1/p1
1 , . . . , Xd ≥ u

1/pd
d

)
du1 . . . dud,

where we have use the fact that Xj(ω) ≥ 0 for almost every ω to justify the second

equality. The change in the order of integration was allowed by Tonelli’s theorem.



CHAPTER 3. LEARNING EXTREMAL GRAPHICAL MODELS IN HIGH DIMENSIONS 176

Finally, applying the change of variable xj = u
1/pj
j , duj/dxj = pjx

pj−1
j produces the

desired result.

Lemma 3.6. Let X and Y be almost surely positive random variables and let S be

the distribution function of (1/X, 1/Y ), so that for positive x, y, P(X ≥ x, Y ≥ y) =

S(1/x, 1/y). Then for any p ∈ {1, 2, . . . },

E
[
(logX)p1 {X > 1}

]
= p

∫ 1

0

S(x,∞)| log x|p−1

x
dx, (3.81)

E
[
(− logX)p1 {X < 1}

]
= p

∫ ∞

1

S([x,∞),∞)| log x|p−1

x
dx, (3.82)

E
[
((logX)(log Y ))p1 {X, Y > 1}

]
=

p2
∫ 1

0

∫ 1

0

S(x, y)|(log x)(log y)|p−1

xy
dxdy, (3.83)

E
[
(−(logX)(log Y ))p1 {X < 1, Y > 1}

]
=

p2
∫ 1

0

∫ ∞

1

S([x,∞), y)|(log x)(log y)|p−1

xy
dxdy, (3.84)

E
[
((logX)(log Y ))p1 {X, Y < 1}

]
=

p2
∫ ∞

1

∫ ∞

1

S([x,∞), [y,∞))|(log x)(log y)|p−1

xy
dxdy,

(3.85)

where S([x,∞), y) and S([x,∞), [y,∞)) are shorthand for S(∞, y) − S(x, y) and

1− S(x,∞)− S(∞, y) + S(x, y), respectively.

Proof. First, by Lemma 3.5 with d = 1, p1 = p,

E
[
(logX)p1 {X > 1}

]
= p

∫ ∞

0

up−1P(logX ≥ u)du

= p

∫ ∞

0

up−1S(e−u,∞)du

= p

∫ 1

0

S(x,∞)(− log x)p−1

x
dx,

by the change of variable x = e−u. Similarly,

E
[
(− logX)p1 {X < 1}

]
= p

∫ ∞

0

up−1P(logX ≤ −u)du

= p

∫ ∞

0

up−1S([eu,∞),∞)du

= p

∫ ∞

1

S([x,∞),∞)(log x)p−1

x
dx,
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by the change of variable x = eu. This establishes (3.81) and (3.82).

(3.83) to (3.85) are proved in a similar fashion by using Lemma 3.5 with d = 2,

p1 = p2 = p. First,

E[((logX)(log Y ))p1 {X, Y > 1}] = p2
∫ ∞

0

∫ ∞

0

(uv)p−1P(logX ≥ u, log Y ≥ v)dudv

= p2
∫ ∞

0

∫ ∞

0

(uv)p−1S(e−u, e−v)dudv

= p2
∫ 1

0

∫ 1

0

S(x, y)((log x)(log y))p−1

xy
dxdy,

using the change of variable x = e−u, y = e−v. Second,

E[((− logX)(log Y ))p1 {X < 1, Y > 1}]

= p2
∫ ∞

0

∫ ∞

0

(uv)p−1P(logX ≤ −u, log Y ≥ v)dudv

= p2
∫ ∞

0

∫ ∞

0

(uv)p−1S([eu,∞), e−v)dudv

= p2
∫ 1

0

∫ ∞

1

S([x,∞), y)(−(log x)(log y))p−1

xy
dxdy,

using the change of variable x = eu, y = e−v. Third,

E[((logX)(log Y ))p1 {X, Y < 1}]

= p2
∫ ∞

0

∫ ∞

0

(uv)p−1P(logX ≤ −u, log Y ≤ −v)dudv

= p2
∫ ∞

0

∫ ∞

0

(uv)p−1S([eu,∞), [ev,∞))dudv

= p2
∫ ∞

1

∫ ∞

1

S([x,∞), [y,∞))((log x)(log y))p−1

xy
dxdy,

using the change of variable x = eu, y = ev. This establishes (3.83) to (3.85).

Lemma 3.7. Under Assumption 3.1, (3.54) to (3.56) hold for any a ∈ (0, 1).

Proof. Recall that i, j,m are assumed to be distinct indices. It is already proved in

(Engelke and Volgushev, 2020, Section S.7) that the moments of interest satisfy

e
(m),ℓ
i =

∫ 1

0

Rim(x, 1)(−2 log x)ℓ−1

x
dx−

∫ ∞

1

Rim([x,∞), 1)(−2 log x)ℓ−1

x
dx, (3.86)

e
(m)
im =

∫ 1

0

∫ 1

0

Rim(x, y)

xy
dxdy −

∫ 1

0

∫ ∞

1

Rim([x,∞), y)

xy
dxdy, (3.87)
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e
(m)
ij =

∫ 1

0

∫ 1

0

Rijm(x, y, 1)

xy
dxdy −

∫ 1

0

∫ ∞

1

Rijm([x,∞), y, 1)

xy
dxdy

−
∫ ∞

1

∫ 1

0

Rijm(x, [y,∞), 1)

xy
dxdy +

∫ ∞

1

∫ ∞

1

Rijm([x,∞), [y,∞), 1)

xy
dxdy

(3.88)

and that their empirical versions satisfy

ê
(m),ℓ
i =

∫ 1

1/k

R̄im(x, 1)(−2 log x)ℓ−1

x
dx−

∫ n/k

1

R̄im([x,∞), 1)(−2 log x)ℓ−1

x
dx, (3.89)

ê
(m)
im =

∫ 1

1/k

∫ 1

1/k

R̄im(x, y)

xy
dxdy −

∫ 1

1/k

∫ n/k

1

R̄im([x,∞), y)

xy
dxdy, (3.90)

ê
(m)
ij =

∫ 1

1/k

∫ 1

1/k

R̄ijm(x, y, 1)

xy
dxdy −

∫ 1

1/k

∫ n/k

1

R̄ijm([x,∞), y, 1)

xy
dxdy

−
∫ n/k

1

∫ 1

1/k

R̄ijm(x, [y,∞), 1)

xy
dxdy +

∫ n/k

1

∫ n/k

1

R̄ijm([x,∞), [y,∞), 1)

xy
dxdy,

(3.91)

where

R̄J(xJ) :=
1

k

n∑
t=1

1

{
F̂i(Uti) ≤

k

n
xi, i ∈ J

}
, xJ := (xi)i∈J ∈ [0,∞)|J |.

The integrals in (3.86) to (3.88) can be truncated above by using (3.59), which

allows to upper bound the tails of the functions RJ . In particular, we have∫ ∞

n/k

Rim([x,∞), 1)(2 log x)ℓ−1

x
dx ≲

∫ ∞

n/k

(log x)ℓ−1

x1+ξ
dx ≲

(k
n

)ξ
log(n/k),

∫ 1

0

∫ ∞

n/k

Rim([x,∞), y)

xy
dxdy =

∫ 1

0

∫ ∞

n/k

Rim([x/y,∞), 1)

x
dxdy

≲
∫ 1

0

∫ ∞

n/k

(x/y)−ξ

x
dxdy

≲
(k
n

)ξ
,

and∫∫
[1,∞)2\[1,n/k]2

Rijm([x,∞), [y,∞), 1)

xy
dxdy

=

∫ ∞

n/k

∫ ∞

n/k

Rijm([x,∞), [y,∞), 1)

xy
dxdy +

∫ n/k

1

∫ ∞

n/k

Rijm([x,∞), [y,∞), 1)

xy
dxdy
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+

∫ ∞

n/k

∫ n/k

1

Rijm([x,∞), [y,∞), 1)

xy
dxdy

≤
∫ ∞

n/k

∫ ∞

n/k

Rijm([x,∞), [y,∞), 1)

xy
dxdy +

∫ n/k

1

∫ ∞

n/k

Rim([x,∞), 1)

xy
dxdy

+

∫ ∞

n/k

∫ n/k

1

Rjm([y,∞), 1)

xy
dxdy

≲
∫ ∞

n/k

∫ ∞

n/k

x−ξ ∧ y−ξ

xy
dxdy + 2

∫ n/k

1

∫ ∞

n/k

x−ξ

xy
dxdy

≲
(k
n

)ξ
log(n/k).

Hence we proved that all integral can be truncated above at n/k while incurring

an error of at most O((k/n)ξ log(n/k)). Next we show that the integrals can as well

be truncated below.

Recall that a ∈ (0, 1). Since by their definitions, RJ and R̄J are both upper

bounded by the minimum component of their argument, so is |R̄J − RJ |. We then

have for ℓ ∈ {1, 2}∫ a

0

|R̄im(x, 1)−Rim(x, 1)|(−2 log x)ℓ−1

x
dx ≤

∫ a

0

(−2 log x)ℓ−1dx ≲ a(1 + log(1/a)),

∫∫
[0,1]2\[a,1]2

|R̄im(x, y)−Rim(x, y)|
xy

dxdy

≤
∫ a

0

∫ a

0

x ∧ y
xy

dxdy + 2

∫ 1

a

∫ a

0

1

y
dxdy ≲ a(1 + log(1/a)),

∫ a

0

∫ n/k

1

|R̄im([x,∞), y)−Rim([x,∞), y)|
xy

dxdy ≤
∫ a

0

∫ n/k

1

1

x
dxdy ≤ a log(n/k),

and by symmetry ∫ n/k

1

∫ a

0

|R̄im(x, [y,∞))−Rim(x, [y,∞))|
xy

dxdy

admits the same bound as the latter integral. Finally,∫∫
[0,1]2\[a,1]2

|R̄ijm(x, y, 1)−Rijm(x, y, 1)|
xy

dxdy
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is handled similarly as∫∫
[0,1]2\[a,1]2

|R̄im(x, y)−Rim(x, y)|
xy

dxdy.

We have therefore proved that each of the integrals in (3.86) to (3.91) can be

truncated below at a point a and above at n/k, up to a deterministic additive error

which satisfies the bound ≲ (k/n)ξ log(n/k) + a(log(n/k) + log(1/a)). It follows that

with probability 1,

ê
(m),ℓ
i − e

(m),ℓ
i =

∫ 1

a

(
R̄im(x, 1)−Rim(x, 1)

)
(−2 log x)ℓ−1

x
dx

−
∫ n/k

1

(
R̄im([x,∞), 1)−Rim([x,∞), 1)

)
(−2 log x)ℓ−1

x
dx

+O

((k
n

)ξ
log(n/k) + a(log(n/k) + log(1/a))

)
,

ê
(m)
im − e

(m)
im =

∫ 1

a

∫ 1

a

R̄im(x, y)−Rim(x, y)

xy
dxdy

−
∫ 1

a

∫ n/k

1

R̄im([x,∞), y)−Rim([x,∞), y)

xy
dxdy

+O

((k
n

)ξ
log(n/k) + a(log(n/k) + log(1/a))

)
,

ê
(m)
ij − e

(m)
ij =

∫ 1

a

∫ 1

a

R̄ijm(x, y, 1)−Rijm(x, y, 1)

xy
dxdy

−
∫ 1

a

∫ n/k

1

R̄ijm([x,∞), y, 1)−Rijm([x,∞), y, 1)

xy
dxdy

−
∫ n/k

1

∫ 1

a

R̄ijm(x, [y,∞), 1)−Rijm(x, [y,∞), 1)

xy
dxdy

+

∫ n/k

1

∫ n/k

1

R̄ijm([x,∞), [y,∞), 1)−Rijm([x,∞), [y,∞), 1)

xy
dxdy

+O

((k
n

)ξ
log(n/k) + a(log(n/k) + log(1/a))

)
,

where the error terms are deterministic. All that remains to obtain the desired result

is to replace the functions R̄J above by R̂J , which amounts to comparing the left- and

right-continuous versions of an empirical tail copula. By the result in Appendix C.1

of Radulović et al. (2017), we have

max
J :|J |≤3

sup
xJ∈[0,∞)|J|

|R̄J(xJ)− R̂J(xJ)| ≤
3

k
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almost surely, so replacing R̄J by R̂J in the integrals above adds an error that is at

most of the order of (log(n/k) + log(1/a))2/k.

Lemma 3.8. Under Assumption 3.1, maxm∈V
∥∥Γ(m)

∥∥
∞ admits an upper bound that

depends only on K and ξ.

Proof. First, as is pointed out in Section 3.12.3, for ℓ ∈ {1, 2}, e(m),ℓ
m = ℓ.

The remaining arguments are based on (3.59), which holds by assumption and

states that for all distinct triples (i, j,m),

Rij([x,∞), 1) ≤ Kx−ξ, Rijm([x,∞), [y,∞), 1) ≤ K(x ∧ y)−ξ, x, y ≥ 1.

Equally important is the fact that every function RJ is upper bounded by its minimum

argument. The proof consists of plugging those different bounds in (3.86) to (3.88)

above, which provided expressions for the moments e
(m),ℓ
i , e

(m)
im and e

(m)
ij . Repeatedly

using the inequality a ∧ b ≤ (ab)1/2 for positive a, b, deduce that

∣∣e(m),ℓ
i

∣∣ ≤ ∫ 1

0

(−2 log x)ℓ−1dx+K

∫ ∞

1

(−2 log x)ℓ−1

x1+ξ
dx,

∣∣e(m)
im

∣∣ ≤ ∫ 1

0

∫ 1

0

(xy)−1/2dxdy +
√
K

∫ 1

0

∫ ∞

1

x−1−ξ/2y−1/2dxdy,

∣∣e(m)
ij

∣∣ ≤ ∫ 1

0

∫ 1

0

(xy)−1/2dxdy + 2
√
K

∫ 1

0

∫ ∞

1

x−1−ξ/2y−1/2dxdy

+K

∫ ∞

1

∫ ∞

1

(xy)−1−ξ/2dxdy.

Simply plugging those bounds in (3.50) yields the result.

3.12.5 Bounds on the measures Rij

Recall the representation of Rij as a non-negative measure, for an arbitrary pair i ̸= j.

The following bounds necessarily hold.

Lemma 3.9. Let 0 < a ≤ b and y > 0. Then for every distinct pair (i, j),

Rij([a, b], y) ≤ y
b− a

a
.

Proof. The idea is that the rectangle [a, b]× [0, y] is included in the trapezoid {(u, v) ∈
[0,∞)2 : a ≤ u ≤ b, v ≤ yu/a} = S(b)\S(a), where

S(x) := {(u, v) ∈ [0,∞)2 : u ≤ x, v ≤ yu/a}.
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By homogeneity of Rij,

Rij(S(b)\S(a)) = (b− a)Rij(S(1)) ≤ (b− a)Rij(1, y/a) ≤ y
b− a

a
,

since Rij is always upper bounded by its smallest argument.

The following bound assumes more but is considerably more flexible, as β can be

both smaller and larger than 1.

Lemma 3.10. Under Assumption 3.2, for every β ∈ (0, 1 + ε] there exists K(β) <∞
such that for any 0 < a ≤ b, y > 0 and every distinct pair (i, j),

Rij([a, b], y) ≤
K(β)

β
yβ
b− a

aβ
.

Proof. The bound in Assumption 3.2 gives

Rij([a, b], y) =

∫ y

0

∫ b

a

rij(u, v)dudv ≤ K(β)

∫ y

0

vβ−1dv

∫ b

a

u−βdu ≤ K(β)

β
yβ
b− a

aβ
.

Lemma 3.11. Under Assumption 3.2, for every β ∈ [−ε, 0) there exists K(β) <∞
such that for any 0 < a ≤ b, y > 0 and every distinct pair (i, j),

Rij([a, b], [y,∞)) ≤ K(β)

−β
yβb−β(b− a).

Proof. Following the proof of Lemma 3.10,

Rij([a, b], [y,∞)) ≤ K(β)

∫ ∞

y

vβ−1dv

∫ b

a

u−βdu ≤ K(β)

−β
yβb−β(b− a).

3.12.6 Technical results from empirical process theory

We collect here two fundamental inequalities from empirical process theory that are

used in Section 3.11.3. Denote by G a class of real-valued functions that satisfies

|f(x)| ≤ F (x) ≤ U for every f ∈ G and let σ2 ≥ supf∈G Pf
2. Additionally, suppose

that for some positive A, V and for all ε > 0,

N(ε,G, L2(Pn)) ≤
(A∥F∥L2(Pn)

ε

)V
(3.92)
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almost surely. In that case, the symmetrization inequality and inequality (2.2) from

Koltchinskii (2006) yield

E[∥Pn − P∥G] ≤ c0

[
σ
(V
n
log

A∥F∥L2(P )

σ

)1/2
+
V U

n
log

A∥F∥L2(P )

σ

]
(3.93)

for a universal constant c0 > 0 provided that 1 ≥ σ2 > const × n−1. In fact, the

inequality in Koltchinskii (2006) is for σ2 = supf∈G Pf
2. However, this is not a

problem since we can replace G by Gσ/(supf∈G Pf 2)1/2.

The second inequality (a refined version of Talagrand’s concentration inequality)

states that for any countable class of measurable functions F with elements mapping

into [−M,M ],

P
(
∥Pn−P∥F ≥ 2E[∥Pn−P∥F ]+ c1n−1/2

(
sup
f∈F

Pf 2
)1/2√

t+n−1c2Mt
)
≤ e−t, (3.94)

for all t > 0 and some universal constants c1, c2 > 0. This is a special case of Theorem

3 in Massart (2000) (in the notation of that paper, set ε = 1).

3.12.7 Discussion of max-stable distributions

In this section, we take X to be distributed according to the max-stable distribution

associated to an arbitrary multivariate Pareto Y with stable dependence function L.

That is, the copula of X is given by

P(F (X) ≤ x) = exp{−L(− logx)}.

We shall demonstrate the following result. Note that the constant K ′ = 48 therein is

not particularly sharp, and can be improved at the cost of more detailed calculations.

Proposition 3.5. The max-stable random vector X, assuming that its marginal

distributions are continuous, satisfies Assumption 3.3 with K ′ = 48 and ξ′ = 1.

Proof. First note that for q > 1/2 and x ∈ [0, 1]|J |, we have∣∣∣q−1P(FJ(XJ) > 1− qx)−RJ(x)
∣∣∣ ≤ 1 ≤ 2q,

so we may without loss of generality consider only q ≤ 1/2.

Now let J be a subset of size 2 or 3. For q ≤ 1/2, we have

P(FJ(XJ) ̸≤ 1− qx) = 1− exp{−LJ(− log(1− qx))}

∈
[
LJ(− log(1− qx))− 1

2
LJ(− log(1− qx))2, LJ(− log(1− qx))

]
, (3.95)
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using a Taylor expansion of the exponential around the origin: for z > 0, e−z =

1− z + z̄2/2 for some 0 ≤ z̄ ≤ z. Here LJ is the stable tail dependence function of the

subvector XJ ; it is obtained by evaluating L at a point the components of which in

positions J c are zero. Using a similar decomposition of − log(1− z) around z = 0, we

find that

z ≤ − log(1− z) ≤ z + 2z2.

Now recal that x ∈ [0, 1]|J |. Using the properties of stable tail dependence functions,

namely that L (and LJ) is component-wise monotone, convex, homogeneous and upper

bounded by the sum of its arguments, we find

LJ(qx) ≤ LJ(− log(1− qx))

≤ LJ(qx+ 2q21)

= 2LJ
(
1
2
qx+ 1

2
2q21

)
≤ LJ(qx) + LJ(2q

21)

≤ LJ(qx) + 2|J |q2.

Finally, deduce from (3.95) that

q−1P(FJ(XJ) ̸≤ 1− qx) ≤ LJ(x) + 6q,

and that

q−1P(FJ(XJ) ̸≤ 1− qx)

≥ min
{
LJ(x)− q−11

2
LJ(qx)

2, LJ(x) + 6q − q−11

2

(
LJ(qx) + 6q2

)2}
≥ min

{
LJ(x)−

9

2
q, LJ(x) + 6q − q−11

2
(3q + 3q)2

}
= LJ(x)− 12q.

We have established an approximation similar to what is desired, but for the probabil-

ities P(FJ(XJ) ̸≤ 1− qx) by the functions LJ :∣∣∣q−1P(FJ(XJ) ̸≤ 1− qx)− LJ(x)
∣∣∣ ≤ 12q. (3.96)

We shall use this result to complete the proof.

For i ∈ V , let Ei = {Fi(Xi) > 1− qxi}. Now, if J = (i, j) has size 2, then

P(FJ(XJ) > 1− qx) = P(Ei ∩ EJ) = qxi + qxj − P(Ei ∪ Ej)
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and

RJ(x) = xi + xj − LJ(x),

so the result follows from (3.96). If J = (i, j,m) has size 3,

P(FJ(XJ) > 1− qx) = P(Ei ∩ Ej ∩ Em)

= P(Ei ∪ Ej ∪ Em)− P(Ei ∪ Ej)− P(Ei ∪ Em)− P(Ej ∪ Em)

+ P(Ei) + P(Ej) + P(Em)

= P(Ei ∪ Ej ∪ Em)− P(Ei ∪ Ej)− P(Ei ∪ Em)− P(Ej ∪ Em)

+ qxi + qxj + qxm,

and similarly

RJ(x) = LJ(x)− Lij(xi, xj)− Lim(xi, xm)− Ljm(xj, xm) + xi + xj + xm,

so the result again follows by aplying (3.96) to approximate each of the four probabilities

above by the corresponding L terms.



Conclusion

“Wondering when I will return to the world

of the living again

Do I even want to leave?”

Gabriel Lucas Riccio

In this thesis, two general methodologies were introduced for the estimation of

tail dependence structures. They both add to existing work in various ways by

allowing more complex distributions to be modeled and inferred. The methods in

Chapter 2 adapt those in Einmahl et al. (2012, 2016) by allowing for asymptotic

independence, while however being constrained to the setting of bivariate distributions

or pairwise identifiable processes. The algorithm presented in Chapter 3 extends the

recent contributions of Engelke and Hitz (2020) and Engelke and Volgushev (2020) to

extremal graphical models by allowing for arbitrary (albeit connected) graph structures

to be learned.

Some of the most important contributions of the thesis are strong theoretical

results about the probabilistic behavior of certain non-parametric estimators, namely

Theorems 2.1, 2.2, 2.4 and 3.3. While they have been developed here with the goal

of supporting our parametric methodologies, they are applicable on a wider scope.

The behavior of any inference based on the function c or, in the spatial context, the

functions c(s) introduced in Chapter 2 would likely be explained by Theorems 2.1,

2.2 and 2.4. In Chapter 3, it was already hinted that Theorem 3.3 is applicable to

EMTP2-constrained inference for Hüsler–Reiss models (Röttger et al., 2021) and to

extremal tree learning (in fact, the result is used in Engelke and Volgushev (2020)).

Nevertheless, there are numerous open questions that would warrant further inves-

tigation, a few of which are now touched upon.

The most obvious question to ask about the work in Chapter 2 is: (how) can it be

extended to dimensions higher than two? Modeling extreme values in a way that allows

for non-trivial asymptotic independence becomes tricky in three or more dimensions,

since asymptotic independence is a fundamentally pairwise notion. Whereas in

the bivariate case, the accepted solution is to model a certain “higher order” tail

186
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dependence by considering joint extremes, in d dimensions there can be exponentially

many “layers” of tail dependence depending on which subset of variables are required

to simultaneously be large. In principle, one can formulate a tail model similar to (2.2)

for each of the 2d − d− 1 subsets of variables. It would be interesting to understand

how those models relate to each other, if at all; given the function cI that arises

in the limit for a certain subset I of variables, does that constrain the form of the

functions cJ for other subsets J which contain/are contained in I? Inference for those

different functions c would probably become infeasible for subsets of more than a

few variables, since observations with a high number of simultaneous extremes are

usually exceptionally rare. This idea could however be coupled with a preprocessing

analysis meant to detect the small groups of variables that are most susceptible to be

asymptotically dependent, exploiting for instance the work of Chiapino et al. (2019),

Simpson et al. (2020) or Meyer and Wintenberger (2020).

Chapter 3 opens up several avenues that were briefly discussed in Section 3.7. An

obvious one is a different choice of the base learner A used in EGlearn, for which

options abound; the tuning-free method of Lederer and Müller (2022) is an attractive

one. The relationship between the extremal graph structure and the matrices Θ(m) in

Hüsler–Reiss models is very similar to that between the precision matrix and graphical

structure in Gaussian models. Using this similarity, some of the innumerable algorithms

for Gaussian graphical model selection could certainly be adapted to perform extremal

graph selection. One example is the adaptive Laplacian constrained optimization

considered in Ying et al. (2021) discussed in Section 3.7. Another possibility would be

to adapt the idea of neighborhood selection to directly estimate the neighborhood of

each variable Yj in the extremal graph itself.

While Hüsler–Reiss distributions have the enjoyable property that their conditional

independence relations are encoded in transformations of certain moments, it would

be interesting to move away from this parametric assumption to other multivariate

Pareto distributions which share a similar property. Of particular interest, can the

“generalized score matching for graphical models” of Yu et al. (2019) be adapted to

recover extremal graphical models?

In a different vein, we are working towards a parallel result to Theorem 3.3 where

we obtain the asymptotic distribution of the empirical variogram in fixed-dimensional

settings. This could be instrumental to achieving uncertainty quantification for

extremal graphical models, perhaps through “confidence sets” of trees (as discussed in

Willis, 2019) or generalizations thereof to non-tree graphs.

Finally, a fascinating research avenue that combines the topics of Chapters 2 and 3

would be to devise a notion of extremal graphical model that allows for asymptotically
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independent groups of variables. While there have been some recent progress in

classifying variables with respect to their asymptotic dependence and independence

relations (Nolde and Wadsworth, 2020), how to integrate this structure in a graphical

modeling approach is not yet understood. It would be exciting if the tools developed

in Chapter 2 could help to estimate such models.
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